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We present GSR, a probabilistic model integrating gene duplica-
tion, sequence evolution, and a relaxed molecular clock for substi-
tution rates, that enables genomewide analysis of gene families.
The gene duplication and loss process is a major cause for incongru-
ence between gene and species tree, and deterministic methods
have been developed to explain such differences through tree
reconciliations. Although probabilistic methods for phylogenetic
inference have been around for decades, probabilistic reconcilia-
tion methods are far less established. Based on our model, we have
implemented a Bayesian analysis tool, PrIME-GSR, for gene tree
inference that takes a known species tree into account. Our imple-
mentation is sound and we demonstrate its utility for genomewide
gene-family analysis by applying it to recently presented yeast
data. We validate PrIME-GSR by comparing with previous analy-
ses of these data that take advantage of gene order information.
In a case study we apply our method to the ADH gene family and
are able to draw biologically relevant conclusions concerning gene
duplications creating key yeast phenotypes. On a higher level this
shows the biological relevance of our method. The obtained results
demonstrate the value of a relaxed molecular clock. Our good per-
formance will extend to species where gene order conservation is
insufficient.
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G ene trees are fundamental to comparative genomics stud-
ies in a multispecies context. Several processes shape gene

trees during evolution. It is well known that phenomena such as
gene duplication and loss, lateral gene transfer, as well as incom-
plete allele sorting can result in incongruence between species
trees and gene trees. The relative frequencies of these events vary
across the tree of life, but it is clear that gene duplication and
loss give rise to many incongruences among eukaryote gene trees,
and that gene duplication is a major force in creating new genes
among these organisms (1, 2). The first methods explaining incon-
gruence between a species tree and a gene tree were based on the
parsimony principle; Goodman et al. (3) pioneered the field by
introducing the term reconciliation for the embedding of a gene
tree into a species tree explaining the evolution of the former.
They also provided an algorithm for computing the most parsimo-
nious reconciliation (MPR). Several variations and formalizations
of MPR have been provided (4–9).

It is interesting to compare this development of reconciliation
methods with that of phylogenetic tree reconstruction methods.
Although there has been an intense debate concerning the rela-
tive benefits of different methods for reconstructing phylogenetic
trees, it is today common to describe the development as a progres-
sion starting in 1965 with parsimony methods (10–12), where an
important step consisted of Maximum Likelihood (ML) methods
(13), and where the most recent contribution is Bayesian methods
(14). We believe it is time for reconciliation methods to progress to
the probabilistic stage, partly because of inherent problems with
MPR. Consider for example a very large gene family. It is clear that
many gene duplications must have occurred during the evolution
of this gene family and, hence, that the gene duplication rate in

the family has been high. Knowing this, is it reasonable to believe
that the reconciled tree best suited to explain the evolution of the
gene family is the one that minimizes the number of duplications?
We argue that one should also consider reconciliations other than
MPR and let information about duplication and loss rates, which
can be inferred from data, guide the selection of a reconciliation.

The gene evolution model, which was the first probabilistic model
for how a gene family evolves with respect to duplications and
losses, was presented in ref. 15, where an algorithm for comput-
ing the probability of a given reconciliation was also provided.
In previous work, for example, refs. 16 and 17, evolution of gene
count within a species tree has been modeled without reference to
an explicit gene tree. The gene sequence evolution model, an inte-
grated probabilistic model for gene duplication, gene loss, and
sequence evolution under a molecular clock, was presented in ref.
18, together with a Markov chain Monte Carlo (MCMC) approach
for estimating the posterior distribution over gene trees, or gene
trees and reconciliations, after having observed sequence data for
a gene family.

Several coalescent-based probabilistic methods for dealing with
incongruence between a species tree and a gene tree caused by
incomplete allele sorting have also been proposed (19–22). These
authors use the coalescent model for modeling allele sorting only,
but it is justified to ask whether the coalescent also is a good model
for gene duplication and loss. However, although the coalescent
has a very natural interpretation when modeling incomplete allele
sorting, there is no natural interpretation of it when modeling gene
duplications giving rise to multiple copies of a gene in individ-
ual genomes. Coalescent-based models also lack the concept of
gene loss. A gene family affected by gene duplication and loss
can, of course, also be affected by allele sorting. This implies
that a model including all these events, generalizing our model
as well as the coalescent model, may be desirable. From a purely
practical point of view the framework we describe here can be
applied to such gene families; however, it remains to be inves-
tigated how well our model serves as an approximation for the
combined model. A method for genome-wide construction of gene
trees was obtained in ref. 23 by combining, in an ad hoc manner,
a neighbor-joining strategy (12) with a strategy to evaluate dupli-
cation frequencies and gene order information. This method was
applied to gene family data from yeast, which is a group of taxa
where gene order is strongly conserved (24). However, there is no
reason to believe that gene order in general will benefit gene tree
reconstruction in other groups, e.g., animals or plants (25, 26).
Another gene tree reconstruction method that allows for species
tree edge-specific as well as gene family-specific nucleotide substi-
tution rates was presented and applied to sequenced fly genomes
in ref. 27.

In this study, we present a new probabilistic model, GSR,
for gene evolution that unifies sequence evolution models,
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substitution rate evolution models, and a duplication-loss process
that generates gene trees respecting the species tree. An algorithm
for reconstructing a gene tree under the model is introduced. Our
algorithm has been validated on synthetic data and evaluated on
gene sequence data from yeast genomes. By evaluating the perfor-
mance on a genomewide dataset, we have demonstrated that the
algorithm is efficient enough to be applied in large-scale studies.

Model for Gene Tree and Sequence Evolution
The gene sequence evolution model with iid rates across gene tree
edges, which we denote GSR, is a joint generalization of the model
from ref. 18 and models used to obtain a relaxed molecular clock
(i.e., substitution rates vary over the tree) (28, 29). GSR integrates
the following probabilistic submodels:

1. A duplication-loss model describing gene evolution.
2. A substitution rate model describing rate variation over

the gene tree.
3. A sequence evolution model describing substitution

events.

Let the species tree S and the gene tree G be planted trees, i.e.,
trees with a root of degree one, with divergence times associated to
their vertices. Because S and its divergence times are considered
to be given, they will be omitted from our notation. The planted
subtree of G containing u, its parent p(u), and all descendants of u
is denoted Gu. Gene tree vertices represent either a speciation or
a duplication event; for speciation vertices the divergence time is
given by the corresponding species tree vertex, and the divergence
times for duplication vertices are given by the duplication-loss
process. Divergence times associated with vertices of a tree induce,
in the natural way, edge times. The purpose of the substitution
rate model is to transform a dated tree, which typically is ultra-
metric (i.e., each root-to-leaf path has the same length), into a
tree consistent with a relaxed molecular clock, thereby provid-
ing a biologically realistic prior distribution for edge lengths, i.e.,
the convolution of edge times and substitution rates convention-
ally used in substitution models. The substitution rate model also
turns out to facilitate more efficient and more accurate gene tree
reconstruction. Let l, r, and t denote functions associating an edge
length, an edge-specific rate, and an edge time, respectively, to
each edge of G so that, e.g., l(u, v) is the edge length of edge 〈u, v〉.
In the next three subsections, we briefly describe each of the GSR
submodels.

Gene Duplication and Loss. The gene evolution model was described
by Arvestad et al. in 2003 (15). Gene evolution is explicitly modeled
as a gene tree G evolving inside a species tree S with given diver-
gence times. Over any edge 〈X , Y 〉 in the species tree, gene dupli-
cations and losses are modeled by a linear birth–death process with
duplication rate λ and loss rate µ. The time for the process is given
by the difference in divergence times between X and Y . Each gene
lineage reaching a speciation vertex X in S splits into two inde-
pendent processes. The process continues recursively down to the
leaves where it stops. All gene lineages that do not reach a leaf in
the species tree are pruned, leaving a reconciled tree comprising
a binary gene tree and a reconciliation explaining how the gene
tree has evolved. Computing the probability of a given reconciled
tree under the model is nontrivial, but efficient algorithms were
given in ref. 18. As will be described below, we will here view the
outcome of the gene evolution model as a gene tree with diver-
gence times, rather than as a reconciled gene tree, as in ref. 18; it
is, however, clear that the former induce the latter.

Substitution Rates. The gene sequence evolution model of Arves-
tad et al. (18) assumed a molecular clock for substitution rates in
the gene tree, i.e., the substitution rate was assumed to be con-
stant over the tree. To allow more biologically realistic scenarios,
we relax the molecular clock (28, 30–35). Our choice is the iid-
" model (34, 36), where edge substitution rates are modeled as

independent and identically "-distributed variables with mean m
and variance ν.

Sequence Evolution. For each edge in the gene tree, we obtain an
edge length by multiplying its edge time and edge rate. Sequence
evolution over the tree can therefore be modeled by using any of
the standard substitution models (13) used in phylogenetics. In
this study, we have chosen to use the JTT amino acid model (37).
The relation between lengths, rates, and times over all edges will
be denoted by l = rt, or conversely r = l/t.

MCMC and Computation of Generation Probabilities
Our model has the following joint generation probability for
sequence data D and a gene tree G

Pr [D, G|S] =
∫

Pr [D|G, l = rt] p[r|G]p[G, t|S]dtdr, [1]

where p[r|G] and p[G, t|S] are prior probability density func-
tions (PDFs) for rates and a gene tree with divergence times,
respectively.

The central observation behind our MCMC algorithm for esti-
mating the posterior of the GSR model is that Eq. 1 can be
factorized into a likelihood function for the sequence evolu-
tion submodel and probabilities for the duplication and rate
submodels. By using a Markov chain where the states, as usual
in posterior estimation in phylogeny, consist of trees with edge
lengths and additional parameters, the joint generation probabil-
ity computations can then be performed by (i) a standard dynamic
programming (DP) algorithm for sequence evolution (13) and (ii)
a DP algorithm, described below, that estimates the duplication-
loss and rate part of the likelihood function using a discretiza-
tion methodology. Our framework also allows standard proposal
functions to be used.

To simplify notation, let θ = (λ, µ, m, ν) denote the para-
meters of the gene evolution model and the substitution rate
model. To determine acceptance probabilities in our Markov
chain, probabilities Pr [G, l, θ |D] need to be computed. These can
be rewritten as

Pr [G, l, θ |D] = Pr [D|G, l] Pr [G, l|θ ] Pr [θ ]
Pr [D]

,

where the parameters θ are assigned independent priors (see Sup-
porting Information (SI) Appendix for further information). As
usual in MCMC estimation of posterior probabilities, the denom-
inators will cancel in any ratio between two such probabilities.
Moreover, the factor Pr [D|G, l] can be computed by using the
standard DP algorithm introduced by Felsenstein (13). We will
now provide the last component of our MCMC algorithm for esti-
mating the posterior of the GSR model, by explaining how to
estimate Pr [G, l|θ ]. By definition

Pr [G, l|θ ] =
∫

t
p[G, l, t|θ ]dt =

∫

t
p[(r = l/t)|m, ν]p[G, t|λ, µ]dt.

Consider a discretization S′ of the species tree S, where the
edges of S are augmented with additional vertices as follows. On
every path from a leaf % to the root there is a vertex at time ti = iδ
for i ∈ {0, . ., d}, where δ is the length of the discretized interval.
We will typically denote vertices of the gene tree by u, v, w and
vertices of S′ by x, y, z. When appropriate, vertices of S will be
denoted X , Y , Z. An illustration with d = 9 is given in Fig. 1.

Let t be the set of all possible edge time vectors t corresponding
to these discretized divergence times. This enables us to estimate
Pr [G, l|θ ] by the following sum:

∑

t∈t

Pr [(r = l/t)|m, ν] Pr [G, t|λ, µ] . [2]
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Fig. 1. The figure illustrates the example presented in the text. In A, a gene
tree, thin black, is shown as evolving inside a discretized species tree. The
edges discussed in the text are marked by arrows. Vertices in S are marked
by gray ellipses, while the vertices augmented to form S′ are marked by
thin horizontal lines. Two gene tree vertices have been introduced in order
to break gene tree edges that pass species tree vertex X . Each of these
vertices are in the reconciliation placed on X and has a child placed on
Y but not on Z. In both cases, this indicates a loss in the species lineage
leading to Z. In B, the tree is cut into the sliced subtrees discussed in the
text.

Although the above sum has exponentially many terms, it can
be computed efficiently by using DP. We will devote the rest of
this section to explain first, using an example, how to compute
Pr [(r = l/t)|m, ν] Pr [G, t|λ, µ] for a specific t, and then how to
compute the sum Eq. 2. We will consider increasingly more com-
plex cases by varying the size and generality of the species tree.
For fixed t, it is straightforward to compute the prior PDF for the
rates, since

Pr [(r = l/t)|m, ν] =
∏

e∈E(G)

ρ(r(e) = l(e)/t(e), m, ν),

where ρ(s, m, ν) is the density function of the "-distribution and
E(G) is the set of edges in G. So, for now we will focus on the
prior PDF of a gene tree whose vertices have been associated with
discretization vertices in S′.

Define p11(x, y) as the probability that a single gene, start-
ing at x, has k + 1 descendants in y, for some k, of which
one may or may not have descendants in the leaves of S
while the remaining k go extinct before reaching the leaves of
S, i.e,

p11(x, y) =
∞∑

k=0

Pr [k births over 〈x, y〉] (k + 1)ε(y)k,

where ε(y) is the probability that one gene starting in y has no
descendants in the leaves of the species tree. For an edge e = 〈u, v〉
in G, where u and v are associated to x and y in S′, respectively, we
will use p11(e) to denote p11(x, y). The simplest and most straight-
forward case is obtained when the species tree consists of a single
edge, i.e., the gene tree is simply evolving over a time interval.
The sum for this simple case is completely analogous to the com-
putational problem treated in ref. 36. In ref. 38, a PDF for a

similar problem was derived, which in our case is equivalent to
the following expression:

Pr [G, t] =
∏

e∈E(G)

2λp11(e).

Notice that p11 has the Markovian property that, for subsequent
vertices x, y, and z, p11(x, z) = p11(x, y)p11(y, z). Two additional
issues must be dealt with: (i) how to handle the deterministic event
of a speciation and (ii) how to handle implicit losses. To handle
speciations we first break the gene tree wherever one of its vertices
or edges passes a species tree vertex, the latter thereby implicitly
indicates a gene loss. This decomposes the gene tree into sliced
subtrees (Fig. 1). The implicit losses can be handled by including
the probability for each such loss as a multiplicative factor in the
PDF for the entire tree. We express the PDF for the entire gene
tree as a product of multiplicative factors corresponding to these
sliced subtrees. In our example the following factors are obtained
over the edges of the species tree:

Edge 1: p11(e1)

Edge 2: p11(e2)2λp11(e3)2λp11(e4)p11(e5)p11(e6)

Edge 3: p11(e7)2λp11(x, X )2

Edge 4: p11(X , Y )2

Edge 5: ε(X , Z)2

We will now explain the DP algorithm for computing Eq. 2.
Since t is no longer fixed, the prior rate PDFs can no longer be
handled separately. In the DP, we will consider subproblems where
we want to estimate the probability of obtaining the planted sub-
tree Gu and lengths l when (i) a single gene tree vertex starts to
evolve at x ∈ V (S′) (i.e., the vertex set of S′) and (ii) the event that
creates u happens at y ∈ V (S′). We will denote this probability
s(x, y, u) and it can be computed by applying DP to the recursion
defined by the cases listed below.

Let u be a vertex of G with children v and w. Moreover, we will
use a function σ (u), that represents MPR, in order to determine
the most recent vertex in S′ on which we can place u. The function
σ is defined as follows: (i) for a leaf l of G, σ (l) is the species for
gene l and (ii) for a nonleaf vertex u of G with children v and w,
σ (u) is the most recent common ancestor of σ (v) and σ (w). Define
Sx to be the subtree of S rooted at x, i.e., the part of S that consists
of x and the descendants of x in S. The recursion consists of the
following cases.

1. If u is a leaf of G corresponding to a gene found in the
species σ (u), then s(σ (u), σ (u), u) = 1.

2. If x is a speciation, i.e., x ∈ V (S), and x &= σ (u), then we
may assume that σ (u) is a descendant of x in S′, and let
s(x, x, u) = 0.

3. If x is a speciation, i.e., x ∈ V (S), and x = σ (u), then

s(x, x, u) =




∑

y∈DL(x)

s(x, y, v)








∑

y∈DR(x)

s(x, y, w)



 ,

where DL(x) and DR(x) are the sets of descendants of the
left and right child, respectively, of x in S′.

4. If x is a speciation, the leaves below u in G are genes found
in the species that are leaves below y in S, and z is the child
of x in S′ that is above y in S′, then

s(x, y, u) = p11(x, z)ε(x, z)
ρ(l(p(u), u)/t(x, y))
ρ(l(p(u), u)/t(z, y))

s(z, y, u).

where ε(x, z) is the probability that a single gene starting
in x does not reach any leaf of L(Sx)\L(Sz) (since u only
has descendant leaves below y, it must have been lost in
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the lineage leading to the other child of x or below that
child). If y = z this simplifies to

s(x, y, u) = p11(x, y)ε(x, y)ρ(l(p(u), u)/t(x, y)).

5. If x is a discretization vertex, i.e., x ∈ V (S′)\V (S), and u
thus corresponding to a duplication, then

s(x, x, u) = 2λ




∑

y∈D(x)\{x}
s(x, y, v)








∑

y∈D(x)\{x}
s(x, y, w)



 ,

where D(x) are the descendants of x.
6. Last, if x is a discretization vertex, i.e., x ∈ V (S′)\V (S),

and, moreover, x has a child z that is above y in S′, then

s(x, y, u) = p11(x, z)
ρ(l(p(u), u)/t(x, y))
ρ(l(p(u), u)/t(z, y))

s(z, y, u).

Similar to case 4 above, when y = z, this simplifies to

s(x, y, u) = p11(x, y)ρ(l(p(u), u)/t(x, y)).

The GSR model and the algorithm described above is imple-
mented in a MCMC framework in the C++ program PrIME-GSR
(for details, see SI Appendix).

Results and Discussion
Tests were conducted to choose the number of discretization
steps, and the self-consistency of the MCMC implementation
of our model was shown by using a generalization of the 90-
percent test previously described in ref. 15. Both self-consistency
and discretization tests were performed on synthetic data (see SI
Appendix).

Yeast Gene Family Analyses. We analyzed publicly available yeast
datasets (39, 40) to compare our method’s performance with pre-
viously published work on well studied gene families. A predicted
whole genome duplication (WGD) occurring in the yeast lineage
presents a challenge for our method, which models individual gene
duplications rather than block or whole genome duplications.

The data comprise gene families sampled from 17 ascomycetes
(see SI Appendix). To enhance comparisons, we used the same
species tree of ascomycete fungi as in ref. 40 (SI Appendix, Fig. S2).
The general structure of this tree is congruent with the results
presented in e.g. ref. 41, but differs in the exact position of some
of the species. We used our MapDP algorithm (36) to estimate
divergence times. We ran three independent analyses and the
result from these were in excellent agreement with each other.
The obtained divergence times are shown in SI Appendix, Fig. S2
and scaled using the 400 Myr fossil dating of the Ascomycete root
of ref. 42.

YGOB. The Yeast Gene Order Browser [YGOB version 1 (43),
see also ref. 39] comprises gene family data from a subset of the
species in SI Appendix, Fig. S2, and is based solely on gene order
(synteny) information. Our comparison with YGOB was aimed
at testing the effect of assuming a molecular clock. More specif-
ically, we evaluated how often PrIME-GSR recovers two specific
branching points predicted by YGOB, namely the vertex splitting
pre-WGD and post-WGD species and the vertex corresponding to
the WGD itself. We analyzed each gene family with PrIME-GSR
by using both a fully relaxed clock (mode 1) and two constrained
modes designed to be closer to a molecular clock. The constrained
modes have varying strictness for stochastic variation in the sub-
stitution process: the variance was set to 0.001m in mode 2 and
0.0001m in mode 3, and the mean substitution rate m was inferred
in the MCMC. The frequency of predictions of the pre/post-WGD
vertex and the WGD vertex was recorded in all three modes.

The relaxed clock mode predicts the pre/post-WGD vertex in
167 (91%) gene families and the WGD itself in 121 (66%). In con-
trast, the corresponding numbers for mode 3 are only 72 (39.1%)
and 14 (7.6%), respectively. Mode 2 performs slightly better, pre-
dicting the pre/post-WGD in 110 (59.8%) gene families and the
WGD in 58 (31.5%), but the result is still considerably worse than
for mode 1. For several of these gene families the difference in
result was caused by substantially longer edge lengths for one of
the post-WGD subtrees, probably due to relaxed selection follow-
ing the duplication (44–46). Analyzing the data in molecular-clock
mode resulted in different rooting of the same (unrooted) tree
as in the relaxed clock analysis, and with this rooting the WGD
vertex was not recovered. By allowing rate variation, i.e., the
relaxed clock, the difference in edge length is accommodated.
These results are also supported by the distribution of posterior
estimates of coefficient of variation (CV) for the substitution rates,
(see SI Appendix).

To assess the impact of including the species tree in the analy-
sis, we ran MrBayes (14) on the same dataset by using the same
amino acid replacement model (see SI Appendix for details). The
pre/post-WGD vertex was found in 156 cases (78%) and the WGD
in as few as 70 cases (35%). It is clear that PrIME-GSR has a strong
advantage compared with a sequence-only model.

Orthogroups. Wapinski et al. (40) present a classification of fungal
genes into 30,109 families, coined orthogroups, based on sequence
and synteny data. The algorithm used to obtain the classifica-
tion, SYNERGY, results in a single rooted gene tree for each
orthogroup. We analyzed the orthogroup sequence data with
PrIME-GSR and tested the agreement between our results and
SYNERGY gene trees.

Following ref. 40 we partitioned the orthogroups into sets
according to their size. The sets were small, medium, large, and
uniform, including orthogroups with <5–10 genes, orthogroups
with 10–17 genes, orthogroups with >17 genes, and orthogroups
with exactly one gene for each of the 17 species, respectively. The
uniform orthogroups were excluded from the medium set.

To obtain a posterior distribution over gene trees in each
orthogroup, we ran PrIME-GSR analyses and the results are
shown in Table 1. Overall we ranked the gene tree suggested by
SYNERGY highest in 2,637 cases (54.8%). In a further 597 cases
(12.4%) it showed up in our posterior distribution but was ranked
in second place or lower. In 1,575 cases (32.8%) it did not show up
in our posterior distribution. Our results and those obtained with
SYNERGY are most in agreement when smaller orthogroups are
analyzed. The SYNERGY tree for both the small and the medium
set ranked first in most cases, 60.2% and 59.3%, respectively. For
uniform orthogroups, which also can be expected to be relatively
easy cases, we agree in 69.0% of the cases. However, we disagree
on most of the large orthogroups. The gene tree suggested by
SYNERGY ranked first in our posterior distribution in only 136
cases (17.6%), while in 548 cases (70.8%) it is not at all present in
the posterior distribution.

This latter group was further investigated to verify that our
results reflected real differences between the methods. For each
of these 548 orthogroups, we reran PrIME-GSR with the tree
suggested by SYNERGY held fixed, integrating over θ and the
edge lengths of the tree. We then compared the unnormalized
maximum a posteriori probabilities (MAP) for the two analy-
ses. The SYNERGY tree MAP value was lower in 496 cases
(90.5%), suggesting that our results are indeed due to differences
in the compared models. Only in 52 cases (9.5%) could the results
be attributed to convergence problems of the original MCMC
analyses (see SI Appendix).

Case Study: ADH. In the study by Thompson et al. (47), six time-
correlated duplications independent of the WGD were proposed
to have affected a set of genes associated with the conversion of
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Table 1. Number of orthogroups for which the gene tree suggested was ranked first, second, third or lower, and not ranked in the
PrIME-GSR posterior distribution

Orthogroup SYNERGY trees in posterior

Size Count 1st 2nd 3rd+ Outside

Small 1,477 889 131 87 370
60.2% 8.9% 5.9% 25.1%

Medium 1,580 937 88 85 470
59.3% 5.6% 5.4% 29.7%

Large 774 136 43 47 548
17.6% 5.6% 6.1% 70.8%

Uniform 978 675 82 34 187
69.0% 8.4% 3.4% 19.1%

Total 4,809 2,637 344 253 1,575
54.8% 7.2% 5.3% 32.8%

glucose to ethanol, including the alcohol dehydrogenase (ADH)
gene family. This proposal was based on a molecular clock argu-
ment. To evaluate these results, we analyzed the ADH orthogroup
with PrIME-GSR. The posterior gene tree distribution is relatively
flat, the best tree has a posterior probability of 0.10. However, most
of the 763 trees sampled in the posterior differed only in a few
subtrees and, as the majority rule consensus tree in SI Appendix,
Fig. S4 shows, almost all clades in the consensus tree have a high
posterior probability. This demonstrates the advantages of obtain-
ing a posterior distribution compared with single point estimates.
Our result shows that, while a large number of duplications have
occurred in the ADH evolution in yeasts, most of these are not
associated with the WGD (see SI Appendix). In particular, the
latter result supports the prediction in ref. 47 for ADH1 and
ADH2.

We also reconstructed the ADH tree using MrBayes (14), and
this shows that there is a conflict between the information in
sequence data and that given by the species tree constraints used
by SYNERGY (see SI Appendix). The PrIME-GSR tree consti-
tutes a intermediate between these extremes. By considering a
posterior distribution of reconciliations rather than the single most
parsimonious reconciliation only, it does a better job reconciling
the incongruence between the sequence tree and the species tree,
than does SYNERGY. PrIME-GSR does not use synteny data;
it is therefore interesting to note that it identifies some relation-
ships predicted by YGOB (39) based on synteny, but not present
in the MrBayes consensus tree, and it calls other synteny pre-
dictions into question (see SI Appendix). We conclude that the
posterior probabilities provided by PrIME-GSR are based on a
sound, explicit probabilistic framework and that the posterior dis-
tribution provides an important support measure that is highly
relevant to genome evolution analysis.

Concluding Remarks
The GSR model allows us to design a biologically realistic method
to reconstruct a gene tree, in the sense that the processes that
contributed to the evolution are considered when reconstruct-
ing the tree, i.e., reconstruction mirrors generation. In partic-
ular, we let the species tree and its divergence times constrain
the gene tree. We implemented this method by using a MCMC
framework in the program PrIME-GSR, and we have shown that
the method is applicable to experimental data on a genomewide
scale.

The PrIME-GSR implementation of the GSR model consti-
tutes a major improvement compared with earlier similar meth-
ods. While a parsimony approach integrating evidence from the
duplication-loss process and the substitution process has already
been used in 1979 by Goodman et al. (3), the first probabilis-
tic approach to integrate duplication-loss models and substitution
models was used in an example application in 2003 (15), where

posterior probabilities from traditional gene tree reconstructions
using MrBayes (14) were combined with orthology probabilities to
achieve weighted orthology probabilities. However, as pointed out
in that study, such an approach rests on a flawed model, because
the constraints induced by the species tree, particularly on gene
tree edge lengths, are not considered in gene tree reconstruc-
tion. In a similar approach using the coalescent model, Liu and
Pearl (22) attempted to accommodate this by a combination of
additional MCMC and importance sampling analyses, as well as
various approximation techniques. A mathematically correct way
to combine the gene evolution model with traditional substitution
models allowing simultaneous reconstruction and reconciliation of
the gene tree was taken by Arvestad et al. in 2004 (18). However, in
that model substitution rates follow a molecular clock. This is often
an unrealistic assumption (48), and our results clearly indicate that
a molecular clock model should be avoided when working with rec-
onciled trees. Both yeast datasets show high estimated coefficient
of variation (see SI Appendix) indicating deviation from a molec-
ular clock, and our analysis of the YGOB data clearly shows that
molecular clock assumptions affected performance negatively. A
similar observation was made in ref. 22, which also assumed a mol-
ecular clock. The GSR model explicitly handles this problem by
the inclusion of a relaxed clock submodel. Moreover, to handle
problems with MCMC over reconciliations and divergence times,
Arvestad et al. applied an approximation of the divergence time
distribution that was based on a sampling strategy. It turned out
that the precision of this approach was insufficient for larger prob-
lems, i.e., where many gene sequences are included. The approach
of using MCMC to integrate over gene tree divergence times and
substitution rates may at first sight appear attractive. However,
from previous experience (36), we know that MCMC conver-
gence over the time and rate space can be very slow. Moreover,
there are technical problems related to branch-swapping on rec-
onciled trees (see SI Appendix). The main technical improvements
that enable our MCMC implementation are the factorization
of generation probabilities and the discretization methodology.
The fact that time can be integrated over Eq. 2 is important for
performance.

Since Nei (49), the birth–death model has been an accepted
model for gene evolution, but a robust justification of the model
has not yet been demonstrated. Our model and tools make it pos-
sible to investigate the suitability of a simple duplication and loss
model for genes.

Gene order, or synteny, information is another rich source of
information for gene tree reconstruction in those organism groups
where synteny conservation is high, e.g., between certain yeast
species (24). In other groups where this is not the case, e.g., animals
and plants (25, 26), its use is significantly more limited. We have in
this article compared our results with a synteny-based gene data-
base. The SYNERGY algorithm (23) combines gene sequence
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data (using a neighbor-joining framework), species trees, and syn-
teny data in an ad hoc manner. In contrast to PrIME-GSR, the
constraints imposed by the species divergence times on the gene-
tree edge length are ignored, and, moreover, only a single best tree
is output rather than a posterior distribution over trees. Moreover,
the results from our yeast study may indicate that missing or weak
conservation of gene order can mislead synteny-based methods.
Nevertheless, inclusion of synteny information is clearly a priority
target for future development of PrIME-GSR. Because of the

complexity of the structural mutation process, it is not a triv-
ial task. However, probabilistic models for gene inversions have
been developed (50) and may provide a promising starting
point.
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