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Species Trees from Gene Trees: Reconstructing Bayesian Posterior Distributions of a
Species Phylogeny Using Estimated Gene Tree Distributions

LIANG LIU1,2 AND DENNIS K. PEARL1

1Department of Statistics, The Ohio State University, Columbus, OH 43210-1293, USA
2Current address: Department of Organismic and Evolutionary Biology, Harvard University, Cambridge,

MA 02138, USA; E-mail: lliu@oeb.harvard.edu

Abstract.— The desire to infer the evolutionary history of a group of species should be more viable now that a considerable
amount of multilocus molecular data is available. However, the current molecular phylogenetic paradigm still reconstructs
gene trees to represent the species tree. Further, commonly used methods of combining data, such as the concatenation
method, are known to be inconsistent in some circumstances. In this paper, we propose a Bayesian hierarchical model to
estimate the phylogeny of a group of species using multiple estimated gene tree distributions, such as those that arise in
a Bayesian analysis of DNA sequence data. Our model employs substitution models used in traditional phylogenetics but
also uses coalescent theory to explain genealogical signals from species trees to gene trees and from gene trees to sequence
data, thereby forming a complete stochastic model to estimate gene trees, species trees, ancestral population sizes, and
species divergence times simultaneously. Our model is founded on the assumption that gene trees, even of unlinked loci, are
correlated due to being derived from a single species tree and therefore should be estimated jointly. We apply the method to
two multilocus data sets of DNA sequences. The estimates of the species tree topology and divergence times appear to be
robust to the prior of the population size, whereas the estimates of effective population sizes are sensitive to the prior used
in the analysis. These analyses also suggest that the model is superior to the concatenation method in fitting these data sets
and thus provides a more realistic assessment of the variability in the distribution of the species tree that may have produced
the molecular information at hand. Future improvements of our model and algorithm should include consideration of other
factors that can cause discordance of gene trees and species trees, such as horizontal transfer or gene duplication. [Bayesian
hierarchical model; coalescent theory; gene tree; MCMC; species tree.]

Traditional molecular-based phylogenetic analysis
consists broadly of two steps: obtaining and aligning
molecular sequences and inferring gene trees for those
sequences. Under this paradigm, gene trees are gener-
ally considered to be synonymous with species trees,
except when forces causing discordance between gene
and species trees are obvious, such as horizontal gene
transfer, deep coalescence, or gene duplication (Maddi-
son, 1997; Maddison and Knowles, 2006). Thus, in fact,
molecular phylogenetic analysis really consists of three
elements: molecular sequences, gene trees, and species
trees. Identifying the relationships among these three
elements and extracting useful information from each
element are key issues for constructing an appropriate
model to explain the evolutionary history of a set of
species.

One discussion in the literature revolves around which
should be used as the direct estimator of the species tree,
sequences or gene trees? Kluge and Wolf (1989, 1993)
claimed that natural data partitions do not exist and
the species tree should be estimated using the whole se-
quence of the genome. They proposed a combined-data
approach (Kluge, 1989; Kluge and Wolf, 1993; Nixon and
Carpenter, 1996) in which the sequences from all avail-
able genes are concatenated into a single sequence, along
with other phylogenetic characters such as morphology
or behavior. This method ignores the existence of the
gene as the basic functional unit on the genome and treats
nucleotides as the direct estimator of the species tree. This
has drawn criticism (Slowinski and Page, 1999) because
it assumes that nucleotides are independent estimates of
the species tree so that the longer the sequence, the more
precise the estimated species tree. It is now generally ap-
preciated that gene trees in principle may not match the

species tree irrespective of whether the gene has a long
sequence or a short sequence. Indeed, recent work shows
that under some combinations of branch lengths in the
species tree, incongruent gene trees are more likely to
occur than congruent gene trees (Kubatko and Degnan,
2006; Degnan and Rosenberg, 2006). In other words, nu-
cleotide or amino acid data are not consistent estimators
of the species tree under some circumstances of speci-
ation. Other approaches consider gene trees as the di-
rect estimator of the species tree (Page, 1998; Pamilo,
1988). This idea is based on Doyle’s (1992) concept that
nucleotides are characters of gene trees, whereas gene
trees are characters of species trees (Maddison, 1997).
This viewpoint suggests that using sequence data to
infer species phylogeny requires two hierarchical lev-
els of estimation: gene tree estimation and species tree
estimation.

Methods for inferring gene trees from sequence data
are numerous and have become extraordinarily sophis-
ticated in recent years (Durand et al., 2006; Coop and
Griffiths, 2004). However, methods for inferring species
trees from gene trees are in their infancy, are not widely
used, and in general suffer from numerous statistical and
methodological drawbacks. For example, the concatena-
tion method may lead to an incorrect estimate with high
probability and is unable to facilitate estimation of im-
portant parameters in the evolutionary history of species
such as population sizes or speciation times. Speciation
times here are distinct from gene divergence times due
to the coalescent process (Edwards and Beerli, 2000).
The deep coalescence method (Maddison and Knowles,
2006) ignores the errors in gene tree estimation and gen-
erally assumes that gene trees are estimated with perfect
certainty. In this approach, maximum likelihood (ML) or
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maximum parsimony (MP) trees are built for each gene
and used as the true gene trees to infer the species tree.
This method then underestimates the variation in the
procedure for inferring a species phylogeny. The gene
tree parsimony method (Page, 1998; Simmons et al., 2000)
and consensus tree methods (Bull et al., 1993; de Queiroz,
1993; Rodrigo et al., 1993; Huelsenbeck et al., 1994) incor-
porate uncertainty of gene tree estimation by using the
bootstrap gene trees (Cotton and Page, 2002) or the esti-
mated posterior distribution of gene trees (Buckley et al.,
2006). When estimating the posterior distribution of gene
trees, these methods estimate the gene tree for each gene
independently using an arbitrary prior distribution for
each gene that involves no information about the species
tree. Specifically, the joint prior distribution of gene trees
G is assumed to be the product of the prior distribution
for each gene tree.

f (G) = f (G1) . . . f (Gk).

This prior distribution does not involve the species tree
and indicates that gene trees are independent of the
species tree, which is contradictory to using these gene
trees to estimate the species tree conducted by the gene
tree parsimony and consensus tree method at the sec-
ond stage. Moreover, gene tree parsimony is unable to
estimate branch lengths of the species tree.

Recent research has focused on a statistical model for
species tree estimation. Here coalescent theory plays a
central role in this model construction. Takahata ap-
plied coalescent theory and estimated the species tree
for three related populations (Takahata, 1989). Degnan
and Salter (2005) have derived the probability distri-
bution for the topology of gene trees given the species
tree. Slatkin and Pollack (2006) specified a statistical
model for the gene genealogies of two linked loci of
three species. Coalescent theory has also been applied
to forming the likelihood for genetic markers such as
RFLPs, SNPs, and AFLPs (Nielsen et al., 1998a, 1998b).
As an alternative to deep coalescence, Arvestad con-
sidered gene duplication as the major source of con-
flicts between gene trees and species trees and proposed
a Bayesian hierarchical model to estimate the species
tree and gene trees simultaneously (Arvestad et al.,
2004).

When estimating the posterior distribution of gene
trees, the prior of gene trees should depend on the species
tree because gene trees can be thought of as random vari-
ables generated from the species tree. When the species
tree and population sizes, θ , are set as unknown con-
stants, the prior of gene trees G is here assumed to be

f (G|S, θ ) = f (G1|S, θ ) . . . f (Gk |S, θ ).

Under the Bayesian philosophy, the species tree and θ
are taken to be random variables. To incorporate uncer-
tainty in the species tree and θ , the prior distribution of
gene trees G is the sum of f (G|S, θ ) over all species trees

and θ ,

f (G) =
∫

θ

∫
S

f (G|S, θ ) f (S) f (θ )d Sdθ ,

which induces a marginal dependence in the gene trees.
Both prior distributions of gene trees suggest that the es-
timation of gene trees depends on the species tree. On the
other hand, estimating the species tree certainly requires
information from gene trees. Therefore, the process for
estimating gene trees and for estimating species trees
should not be independent. Gene trees and the species
tree should be estimated simultaneously.

This suggests that a Bayesian model for inferring the
species tree using sequence data should have the follow-
ing features:

(1) It should simultaneously involve the distribution of
sequences, gene trees, and the species tree.

(2) The underlying species tree should induce a marginal
dependence in the gene trees, which should then be
inferred jointly across loci.

(3) The model must take into account errors in the esti-
mation of gene trees.

BAYESIAN HIERARCHICAL MODEL

In the equations that follow, we use the following ab-
breviations: D: sequence data; G: a vector of gene trees;
�: parameters in the likelihood function except the gene
tree vector G; S: species trees; θ : transformed effective
population sizes, θ = 4Neµ.

The posterior probability of a species tree and θ is given
by

f (S, θ |D) = 1
f (D)

∫
�

∫
G

f (D|G, �) ∗ f (�) ∗ f (G|S, θ )

∗ f (θ ) ∗ f (S)dG d�.

Our Bayesian hierarchical structure consists of mod-
eling the following components: f (D|G, �), f (�),
f (G|S, θ ), f (S), and f (θ ), each of which is explained
below.

f (D|G, �). Markovian models dominate the likelihood-
based literature for both nucleotide and amino acid
substitution (Felsenstein, 2004b). It is worth mention-
ing that, although models for nucleotide and protein
sequence data are the most common, our formulation
allows for any type of underlying input data where
f (D|G, �) can be appropriately described. The quan-
tity f (D|G, �) will change according to the input data
and, for the same type of data, the most suitable model
may be selected using a likelihood-based model selec-
tion process (Posada and Crandall, 1998) or informa-
tion theory (Minin et al., 2003).

f (�). � includes the parameters in the substitution
model and all other parameters in the likelihood func-
tion except the gene tree. Naturally, the prior on � will
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depend on the nature of the data at hand. For example,
a variety of options for the prior of � are available in
the Bayesian gene tree program, MrBayes (Ronquist et
al., 2005).

f (G|S, θ ). The distribution of gene trees given the species
tree is derived from coalescent theory. Although the
procedure can allow more general models, our initial
implementation uses the coalescent theory in which
random mating is assumed in each population. We also
assume no gene flow after species divergences and no
recombination within a locus but free recombination
between loci.

The branch length in a species tree represents “time”
(numbers of generations), whereas it is the expected
number of mutations in a gene tree. To make the two
parameters compatible, we transform to θ = 4µNe ,
where Ne is the effective population size and µ is the
mutation rate measured as the expected number of
nucleotide substitutions per site per generation.

The joint probability distribution of a gene tree
topology and the m-n coalescent times tn+1, . . . , tm for
a single population reduced from m to n sampled in-
dividuals along a branch of length τ in a species tree
was derived by Rannala and Yang (2003) to be

exp

[
− n(n − 1)

θ

(
τ −

m∑
j=n+1

tj

)]
m∏

j=n+1{
2
θ

exp
[

− j( j − 1)
θ

tj

]}

Thus f (G|S, θ ) is the product of such probabili-
ties across all the populations. For a vector of gene
trees, G, that are independent given the species tree,
we multiply these conditional likelihoods in turn to
find f (G|S, θ ). It should be noted that the species tree
space is constrained because we assume that the gene
split times of any two species predate their speciation
time. So the cumulative node-to-tip branch lengths in
the gene trees are always longer than their counter-
parts in the species tree.

Note also that the θ may be different for differ-
ent genes. For example, the mitochondrial and Y-
chromosomal genes are uniparentally inherited and
haploid. Thus, in the data analyses below, we assume
their effective population sizes are one fourth that of
autosomal markers.

f (θ ). We use independent gamma distributions as the
prior of θ . The gamma density function is

f (x|α, β) = �−1(α)β−αxα−1e− x
β

with mean αβ and variance αβ2. The hyperparameters
α and β can be chosen to reflect the range and likely
values of θ (Rannala and Yang, 2003).

f (S). We use a birth-and-death process (Nee et al., 1994)
as the prior distribution of the species tree’s topology

and branch lengths. Given the speciation rate (s), ex-
tinction rate (e), and the number of species (n), the
joint density of the topology (T) and branch lengths
(τ ) of a particular species tree is (Yang and Rannala,
1997):

f (T, τ |n, τ1, s, e) = 2n−1

n!(n − 1)

n−1∏
j=2

λP1(tj )
νt1

where

νt1 = 1 − 1
ρ

P(0, t1)e (s−e)t1 , P1(t) = 1
ρ

P(0, t)2e (s−e)t1

and

P(0, t) = ρ(s − e)
ρs + [s(1 − ρ) − e]e (e−s)t .

Mutation rate variation among loci may influence the
estimation of ancestral population sizes (Yang, 1997;
Chen and Li, 2001). Nevertheless, if the ratios of rates
between loci are known, we can incorporate them in the
likelihood calculation (Yang, 1997). We treat these rel-
ative mutation rates among loci as parameters in our
model and assume that their prior follows the uniform
(0,10) under the constraint that the average ratio is 1.

COMPUTATIONAL ALGORITHM

The entire species tree estimation procedure consists
of three steps.

Step 1 (within MrBayes): Generate vectors of gene trees
from MrBayes using the approximate prior, K (G),
based on a “Maximum” species tree estimate in the
Hastings ratio to decide on acceptance of each vector
into the Markov chain.

Step 2: Using a second MCMC algorithm, generate
species trees from the distribution compatible with the
gene trees given by the approximate posterior distri-
bution K(G|D) from step 1.

Step 3: Use importance sampling to align the results with
what would have occurred if the initial sample had
been from the true prior, f (G).

Markov chain Monte Carlo (MCMC) is implemented
to evaluate the posterior distribution of the species tree
because f (D) involves an intractable integral. The pos-
terior distribution of the species tree can be formulated
as follows:

f (S, θ |D) =
∫

�

∫
G

f (S, θ , G, �|D)dGd�

= 1
f (D)

∫
�

∫
G

f (D|G, �) ∗ f (�) ∗ f (G|S, θ )

∗ f (θ ) ∗ f (S)dGd�
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= 1
f (D)

∫
�

∫
G

f (D|G, �) ∗ f (�) ∗ f (G)
f (G)

∗ f (G|S, θ ) ∗ f (θ ) ∗ f (S)dGd�

= 1
f (D)

∫
�

∫
G

f (D|G, �) ∗ f (�)

∗ f (G)
f (G|S, θ ) f (θ ) f (S)

f (G)
dGd�

=
∫

G
f (G|D) f (S, θ |G)dG. (1)

The posterior of species tree and population sizes
given data, f (S, θ |D), is the posterior of species tree and
θ given gene trees f (S, θ |G) weighted by f (G|D). This
motivates our algorithm to generate the posterior distri-
bution of gene trees first and then use these gene trees to
generate the posterior for the species tree.

However, in the first stage of using DNA sequences
to estimate the posterior of gene trees, the prior of gene
trees, f (G), is unknown. Theoretically, f (G) is equal to
the integration of f (G|S) with respect to the species tree
(topology and branch lengths) and population size θ ,
namely,

f (G) =
∫

θ

∫
S

f (G|S, θ ) f (S) f (θ )d Sdθ.

It is by no means trivial to calculate f (G). Instead we
use an approximation to this prior, under the assump-
tion that the gene splitting time is earlier than the speci-
ation time, within MrBayes to define the Markov chain.
In particular, for a given vector of gene trees we form the
“maximum tree” defined as the ultrametric tree that has
the maximum divergence times for a species tree that is
compatible with all the gene trees in the vector. We then
apply Rannala and Yang’s formula for the distribution of
gene tree topologies and branch lengths consistent with
this maximum tree to find an approximate prior K (G).
Here, the integral with respect to the population sizes,
θ , is approximated using the Monte Carlo method. This
prior is used to define the Hastings ratios in MrBayes that
decides whether a vector of gene trees is accepted into the
Markov chain. The chain is then run to convergence, gen-
erating a sample from the approximate posterior distri-
bution K (G|D). We save a subsample from this chain G1,
G2, . . . , GN along with the associated approximate priors
K (G1), K (G2), . . . , K (GN) to be used in steps 2 and 3.

In step 2 we find the posterior distribution of the
species tree given the gene tree vectors generated in step
1. Here a second MCMC algorithm is applied. For this al-
gorithm, the birth-and-death process was used to define
the prior distribution of species trees (Nee et al., 1994) and
the likelihood is defined by coalescent theory via Rannala
and Yang’s formula. The movement strategy employed
a random selection of nodes and replacement uniformly
within a random band that maintained the constraints
while adjusting the topology where needed.

Step 2 provides k samples from f (S|Gi ) for each of the
gene tree vectors G1, G2, . . . , GN arising from the samples

in step 1. Finally, importance sampling is applied to find
the posterior distribution of species trees given the data.
Note that:

f (S, θ |D) =
∫

G
f (G|D) f (S, θ |G)dG

=
∫

G

[
K (G|D)

f (G)
K (G)

]
f (S, θ |G)dG.

The ith sample from step 1 gives the value for K (Gi |D).
We need to multiply this by f (Gi )

K (Gi )
in order to align it with

f (Gi |D) and produce samples from the true posterior.
Despite the fact that f (Gi ) is not known, we can apply the
harmonic mean technique (Newton and Raftery, 1994) to
estimate it. In particular, we have

1
f (Gi )

∝
∫

speciestree

1
f (Gi )

f (S)d S

=
∫

speciestree

1
f (Gi |S)

f (Gi |S)
f (Gi )

f (S)d S

=
∫

speciestree

1
f (Gi |S)

f (S|Gi )d S,

where the constant of proportionality, α, is the probabil-
ity that a random species tree chosen from the birth-and-
death model satisfies the constraints associated with Gi .
Thus, a consistent estimate of f (Gi ) is given by

f̂ (Gi ) = α̂i

[ k∑
j=1

1
f (Gi |Sj )

]−1

(2)

using the samples S1, . . . , Sk from f (S|Gi ) found in step 2.
The value of α̂i is found by averaging f (S) over randomly
sampled trees from the constraint space induced by Gi .
The final sample from the joint posterior distribution of
S and G given D are then the pairs

[(S1, G1), (S2, G1), . . . , (Sk, G1)], [(S1, G2), (S2, G2), . . . ,

(Sk, G2)], . . . , [(S1, GN), (S2, GN), . . . , (Sk, GN)]

where the block of pairs

[(S1, Gi ), (S2, Gi ), . . . , (Sk, Gi )]

is given total weight

f̂ (Gi )
K (Gi )

[
N∑

i=1

f̂ (Gi )
K (Gi )

]−1

.

We wrote a program in C language to implement
the algorithm which is available at www.stat.osu.edu/∼
dkp/BEST. The BEST part of the algorithm goes very
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quickly, but the Markov chains in MrBayes must be run
approximately 10 times as long as usual in order to ac-
commodate the importance sampling. The run time is
O(n2) in terms of number of taxa and O(n) in terms of
number of loci.

DATA ANALYSIS

Australian Finch Data

We first apply the new method to a multilocus nu-
cleotide dataset from birds recently published by Jen-
nings and Edwards (2005). They obtained the allelic data
of 30 loci (Pa-01. . . Pa-30) from one individual per pop-
ulation of Poephila acuticauda, P. hecki, P. cincta. They also
included sequences from a more distant relative, the ze-
bra finch (P. guttata), as outgroup. A total of 30 anony-
mous loci were developed, ranging in size from 216 to 825
bp. They performed a “four-gamete test” and the result
showed that the overall incidence of intralocus recom-
bination in the data appears very low, which supports

TABLE 1. The posterior distributions of gene trees and species trees in the finch data set. There are only three possible topologies for three
species, where 1, 2, 3 represent the species Poephila acuticauda, P. hecki, P. cincta, respectively. The posterior probability for each topology is listed
for each gene. The highest value is in bold. The row labeled concatenation lists the posterior probabilities of species trees for the concatenation
method. The Bayesian estimate is the second topology (3,(1,2)) with probability 1. The rows of joint priors are the posterior distributions of
species trees for the BEST method with different priors for θ , gamma (1,139), gamma (1,1389), gamma (1,10) and gamma (1,1).

Independent prior Joint prior

(2,(1,3)) (3,(1,2)) (1,(2,3)) (2,(1,3)) (3,(1,2)) (1,(2,3))

Pa-1 0.184 0.671 0.146 0.171 0.683 0.146
Pa-2 0.337 0.353 0.309 0.299 0.375 0.326
Pa-3 0.062 0.88 0.058 0.056 0.915 0.029
Pa-4 0.331 0.331 0.337 0.221 0.452 0.327
Pa-5 0.319 0.319 0.361 0.264 0.398 0.338
Pa-6 0.012 0.966 0.022 0.047 0.894 0.059
Pa-7 0 1 0 0 1 0
Pa-8 0 1 0 0 1 0
Pa-9 0.042 0.912 0.046 0.026 0.935 0.038
Pa-10 0.222 0.547 0.232 0.117 0.699 0.184
Pa-11 0 1 0 0 1 0
Pa-12 0.319 0.353 0.327 0.293 0.449 0.258
Pa-13 0.493 0.503 0.004 0.257 0.743 0
Pa-14 0.242 0.503 0.255 0.254 0.497 0.249
Pa-15 0.325 0.349 0.325 0.151 0.578 0.271
Pa-16 0.335 0.333 0.331 0.233 0.496 0.271
Pa-17 0.042 0.02 0.938 0.073 0.156 0.772
Pa-18 0 0 1 0 0 1
Pa-19 0 0 1 0 0 1
Pa-20 0 0.002 0.998 0 0 1
Pa-21 0 0 1 0 0 1
Pa-22 0.04 0.076 0.884 0.045 0.085 0.87
Pa-23 0.014 0.064 0.922 0.019 0.046 0.935
Pa-24 0 1 0 0.002 0.998 0
Pa-25 0.311 0.339 0.349 0.232 0.503 0.265
Pa-26 0.782 0.212 0.006 0.482 0.5 0.018
Pa-27 1 0 0 1 0 0
Pa-28 0.389 0.305 0.305 0.298 0.431 0.271
Pa-29 0.01 0.653 0.337 0.001 0.739 0.26
Pa-30 0.333 0.327 0.339 0.164 0.68 0.156
Average support 0.205 0.434 0.361 0.157 0.508 0.335
Concatenation 0 1 0
Joint prior (1,139) 0.08 0.88 0.04
Joint prior (1,1389) 0.03 0.95 0.02
Joint prior (1,10) 0.08 0.89 0.03
Joint prior (1,1) 0.01 0.94 0.05

one of the assumptions in our model that there is no in-
tralocus recombination. Jennings and Edwards also used
the assumed species tree topology previously supported
by morphological and mtDNA studies and employed a
multilocus coalescent approach to infer the effective pop-
ulation sizes and divergence times.

Posterior distributions of gene trees for 30 genes using the
independent prior.—The posterior distributions of gene
trees are estimated in MrBayes assuming independent
loci. HKY85 (Hasegawa et al., 1985) was selected as the
substitution model that best fit the data according to a
hierarchical likelihood ratio test. Because the position of
species P. guttata is fixed as the outgroup, there are only
three possible topologies, (2,(1,3)), (3,(1,2)), and (1,(2,3)).
Here 1, 2, 3 represent the species Poephila acuticauda, P.
hecki, P. cincta, respectively. From Table 1, there are 15
genes out of 30 whose estimates of the gene tree sup-
port the tree (3,(1,2)). The average probability for (3,(1,2))
across the 30 genes is 0.434. The corresponding probabil-
ities for the other two possible trees are 0.205 and 0.361.
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Thus the tree (3,(1,2)) has slightly more support from the
gene trees than (2,(1,3)) and (1,(3,2)). One way to esti-
mate a species tree from multiple gene trees when there
are three taxa is via a majority-rule criterion, whereby
the gene tree whose topology is found most frequently
is presumed to reflect the topology of the species tree.
The majority-rule estimate of the species tree is thus the
second tree, (3,(1,2)).

Bayesian estimation of the species tree for the concate-
nation method.—In this case, the multilocus sequences
are concatenated into a single sequence. The concate-
nated data was analyzed in MrBayes with an HKY85
substitution model. The prior for the topology was
taken to be a uniform distribution, and branch lengths
were assumed to be independently distributed ex-
ponentials. The resulting estimated topology of the
species tree is in Table 1. It matches the majority-rule
tree in (1) and its posterior probability is essentially
one.

Bayesian estimation of gene tees, topology of species trees,
effective population sizes, and divergence times using the
proposed method.—The finch data set was analyzed in
MrBayes. The posterior distribution of gene trees was
estimated with an HKY85 substitution model and the
joint prior of gene trees across 30 genes. The esti-
mated joint gene trees were then used to reconstruct the
species tree using MCMC as implemented in the pro-
gram Bayesian Estimation of Species Tree reconstruction
program (BEST). Three different priors of effective pop-
ulation sizes were used to evaluate the effect of the prior
on the posterior distribution. The priors are exponential
distributions with means 1, 0.1, 0.0072, and 0.00072. The
median of these four priors for effective population sizes
(in the units of substitutions per site) are then 0.693, 0.069,
0.005, and 0.0005. They reflect the user’s initial guess
about the population sizes. To convert the posterior me-
dians of these parameters to estimates of the posterior
speciation times in years and effective population sizes,
we assume the mutation rate is 3.6 × 10−9, as in Jennings
and Edwards (2005).

The same species tree with strong support is estimated
regardless of which of the priors we use (Table 1). Our
estimate of the species tree agrees with the one estimated
by the concatenation method except that the support for
the clade (1,2) is essentially one for the concatenation
method and the support of the same clade is approxi-
mately 0.88 for the BEST method (Table 1).

To compare the BEST method with the concate-
nation method, we estimate the Bayes factor using
the harmonic mean of the likelihood. Although the
harmonic mean method can be somewhat unstable
and sensitive to the lowest value of the likelihood
(Lartillot and Philippe, 2005), it works here because
the likelihoods for the two different methods are well
separated (Fig. 1). The Bayes factor suggests that the co-
alescent model fits the data better than the concatenation
method.

The posterior estimates of the divergence times are
similar for the different priors (Table 2), indicating a
strong signal in the data for these parameters. On the

FIGURE 1. The log-likelihood curves of two analyses for the finch
data set. The curve on the top is the likelihood for our model. The
second curve is the likelihood for the concatenation method. They are
well separated and our model has much greater likelihood than the
concatenation method.

other hand, the posterior distribution of the population
sizes does appear to be sensitive to the prior chosen. The
estimate is strongly correlated to the median of the prior
for the clade (1,2), whereas the clade (1,2,3) is relatively
insensitive to the priors (Table 2).

The gene trees are correlated as a consequence of their
joint dependence on the species tree. We should use a
joint distribution to formulate the prior of gene trees from
different genes. In our model, the joint distribution is
derived from coalescent theory. Let Gi be the gene tree
for gene i and S be the species trees. The joint distribution

TABLE 2. Estimates of the ancestral population sizes and diver-
gence times for different priors in the finch data set. The priors for θ

are exponential with means 1/1389, 1/139, 1/10, or 1. For each prior, the
estimates of the divergence times and population sizes of a particular
ancestral population are listed in columns 2 and 3. (1,2) represents the
ancestral population of species 1 and species 2. (1,2,3) is the ancestral
population of species 1, species 2, and species 3.

Divergence times Population sizes

Exponential mean 0.00072
(1,2) 0.00408 (0.00277, 0.00457) 0.00218 (0.00072, 0.00553)
(1,2,3) 0.00449 (0.00344, 0.00547) 0.00407 (0.00252, 0.00604)

Exponential mean 0.0072
(1,2) 0.00297 (0.00147,0.00389) 0.00693 (0.00069,0.02813)
(1,2,3) 0.00418 (0.00325,0.00523) 0.00506 (0.00290, 0.00837)

Exponential mean 0.1
(1,2) 0.00235 (0.00100,0.00376) 0.0155 (0.00149,0.23625)
(1,2,3) 0.00418 (0.00326,0.00493) 0.00481 (0.00292, 0.00783)

Exponential mean 1
(1,2) 0.00249 (0.00065,0.00262) 0.01237 (0.00310,0.44104)
(1,2,3) 0.00429 (0.00343,0.00525) 0.00503 (0.00309, 0.00799)
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of gene trees is given by

f (G) = f (G1 . . . G K ) =
∫

S

∫
θ

f (G1|S, θ ) ∗ . . .

∗ f (G K |S, θ ) ∗ f (θ ) ∗ f (S)d Sdθ

where f (Gi |S, θ ) follows coalescent theory. f (G1 . . . Gk)
tends to put more weight on gene trees with similar
topologies and branch lengths. This can be seen from the
posterior probabilities of the gene trees in Table 1. There
are 22 genes supporting the tree (3,(,1,2)) in Table 1, com-
pared with only 15 genes when the independent prior
was used (Table 1). The average support probability for
(3,(1,2)) is 0.508, which is increased by 0.074 (17%) from
the average support under the independent prior. In-
terestingly, we can see the pattern of the change of the
posterior probability of gene trees. Consider genes Pa-4,
Pa-5, and Pa-18. For genes Pa-4 and Pa-5, both posteriors
under the independence model favor the third topology
in Table 1. However, after adjusting for the species coales-
cent process, their posteriors change to favor the second
topology, which is the Bayesian estimate for the major-
ity of genes. This is because gene trees are correlated in
f (G) and the topology of a particular gene tree depends
on the gene trees for other genes. If a majority of genes
support the same topology, it will make the rest of the
genes more likely to have a similar topology. But if the
support is extremely strong as for the gene Pa-18 that
supports the third topology with probability near 1, its
posterior may not be changed even if the joint prior is
used. A similar pattern is seen with Pa-21, -16, and -30 in
Table 1.

Our estimate of the species tree agrees with the
assumed species phylogeny found by Jennings and
Edwards (2005). The posterior probability of the species
tree topology is around 0.9 no matter what prior we used.
The estimate of the divergence time for (1,2) using our
method is similar to the estimate given by Jennings and
Edwards. However, our estimate for the clade ((1,2),3)
is 0.00418, which is higher than Jenning and Edwards’
estimate (0.00254). For the population size, both meth-
ods have the estimate for the clade (1,2,3) around 0.005.
However, the estimates of the population size of clade
(1,2) are sensitive to the prior for both techniques.

Analysis of Multilocus Macaque Data

Tosi and Morales (2003) isolated total genomic DNA
of 63 macaques from 19 species and eight outgroup taxa.
The DNA sequences were obtained from Y-chromosomal
loci, mtDNA, C4 long intron 9, and IRBP intron 3. In their
analysis, the ML tree was estimated for each gene, as-
suming an HKY85+G substitution model. The four dif-
ferent gene trees were used to make inference on the
pattern of the species tree, but no method was available
to combine the data, and concatenating the sequences
was deemed inappropriate. Divergence times were es-
timated only for the Y-chromosomal and mitochondrial
trees.

Here we analyze a reduced data set of 19 species, in-
cluding one outgroup taxa (T. gelada), for which there
are data on all four “genes.” We randomly chose an al-
lele from each species. The modified data were analyzed
using the proposed method to estimate the posterior of
gene trees and species trees. Further, a sensitivity anal-
ysis was performed to investigate the influence of each
gene on the overall estimate of species trees.

Estimate of the species tree using the BEST algorithm.—
The effective population sizes are parameters in the
likelihood of gene trees given species trees. In the-
ory, Y-chromosomal and mitochondrial genes are uni-
parentally inherited and haploid, making their effective
population sizes one fourth that of autosomal mark-
ers (Tosi and Morales, 2003). This data set is a mixture
of Y-chromosomal, mitochondrial genes, and autosomal
genes. According to the coalescent theory, the probability
that the gene tree matches the species tree depends on
the ratio of branch length and the effective population
size. Thus, to make the data from the four genes com-
parable, the 1-to-4 effective population size adjustment
based on the mode of inheritance was made in our anal-
ysis. The concatenation method does not apply to this
example because the genes in the data have different ef-
fective population sizes and a different mode of inheri-
tance (Miyamoto and Fitch, 1995; Moore, 1995; Ruvolo,
1997).

Fooden (1980) defined four species groups for
macaques according to distinct forms of male repro-
ductive anatomy. The species groups include the silenus
group, fascicularis group, sinica group, and arctoides
group. Our estimate of the species tree identified the
silenus group with relative high posterior probability
(Fig. 2). The species in the other three groups are not
well resolved. This indicates inadequate information in
the dataset and that more genes or alleles may be needed
for estimating the species tree of macaques.

It is interesting to compare the posterior of the gene
trees with the posterior of species trees. Let D(T1,T2) be
the symmetric distance between two random trees T1
and T2 (Robinson and Foulds, 1981). Table 3 provides
the average ± standard deviation of the distribution of
distances between the gene tree, T1, and the species tree,
T2, based on the posterior distributions computed under
both the independence model and the coalescent model.
The distances for the independent gene model are larger
than the distances for the joint coalescent-based model
for all four genes. This result suggests that the joint model
makes the gene trees closer to the estimated species tree
than the independent gene model.

Comparison of coalescent-based model with the independent
gene model.—Our method assumes the joint estimate of
the posterior of gene trees must be compatible with the
species tree while common analyses assume that loci are
independent. To evaluate the effect of different priors
on the posterior distribution of gene trees, we want to
know if the posterior distributions of gene trees using
two different priors are different. To test if two distribu-
tions are different, we introduce a theorem by Maa et al.
(1996).
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FIGURE 2. The estimate of the species tree for macaques using the BEST method. This is the consensus tree of the sample trees from the
posterior distribution of species trees. T. gelda is outgroup. The species tree has four species groups. The four groups identified by the species
tree are strongly correlated with the geographical distribution of the species.

TABLE 3. The average ± SD of distances between two posterior
distributions for each gene in the macaques data set. There are three
posterior distributions for each gene, the posterior of species trees, and
the posterior of gene trees with the independent gene model and the
posterior of gene trees with the joint coalescent-based model. The av-
erage distances between the posterior of species trees and the posterior
with the independent prior (denoted by independent-species) as well
as the posterior of species trees and the posterior with the joint prior
(denoted by joint-species) are calculated by Phylip (Felsenstein, 2004)
using the symmetric distance measure (Robinson and Foulds, 1981).

Independent-species Joint-species

Y chromosome 0.781 ± 0.089 0.656 ± 0.085
mtDNA 0.739 ± 0.092 0.646 ± 0.084
C4 intron 9 0.779 ± 0.054 0.659 ± 0.078
IRBP intron 3 0.838 ± 0.052 0.659 ± 0.070

We want to test the hypothesis H: F1 = F2, where F1
and F2 are two distributions such as the two posterior
tree distributions examined here. Let X1 and X2 be inde-
pendent and identically distributed random draws from
F1 and independent of Y1 and Y2 from F2. Take D(., .) to be
any appropriately chosen distance function. The theorem
posits that F1 = F2 if and only if D(X1, X2) = D(Y1, Y2) =
D(X1, Y1) in distribution.

To apply the theorem, we calculated the three dis-
tances (two within group distances and the between
groups distance) for each gene in Table 4. The re-
sults show that the three distances are quite dif-
ferent for all genes, indicating that the joint prior
and the independent prior result in two significantly
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TABLE 4. The average ± SD of distances between two posterior
distributions for each gene in the macaques data set. There are two
posterior distributions for each gene, the posterior of gene trees assum-
ing independent genes and the posterior of gene trees with the joint
coalescent-based model. The average distances between each poste-
rior and itself (denoted by independent-independent or joint-joint) are
calculated in Phylip. The average distance between the two different
posterior (denoted by independent-joint) is also calculated in Phylip.

Independent-
independent Joint-joint Independent-joint

Y chromosome 0.309 ± 0.067 0.164 ± 0.066 0.356 ± 0.070
mtDNA 0.215 ± 0.077 0.070 ± 0.062 0.272 ± 0.087
C4 intron 9 0.319 ± 0.067 0.237 ± 0.062 0.501 ± 0.047
IRBP intron 3 0.257 ± 0.068 0.101 ± 0.068 0.362 ± 0.052

different posterior distributions of gene trees for this data
set.

Sensitivity analysis.—Genes may have different influ-
ence on the posterior distribution of species trees. We
examined the potential gene-by-gene sensitivity of our
results by eliminating each single gene from the analysis
in turn and reestimating the posterior of species trees.
Let S1, S2, S3, and S4 be the posterior of species trees es-
timated without the Y-chromosome, mtDNA, C4 intron
9, and IRBP intron 3 data, respectively. Table 5 displays
the distances between each Si and S (the posterior of
species trees using all four genes). The mean distances
for all four genes are comparable and the credible inter-
vals for the four distances almost entirely overlap. This
suggests that the estimation of the species tree is not
overly subject to the strong influence of a single outlier
gene.

DISCUSSION

Different genes may have different mechanisms of
evolution and support different phylogenetic relation-
ships. Mixing this diverse set of circumstances together
through concatenation is then inappropriate (Mossel and
Vigoda, 2005) and may lead to difficulties in the per-
formance of algorithms that do not recognize the prob-
lem explicitly. This work defines the correlation be-
tween gene trees through their common species tree
but then, conditional on this species tree, allows for a
completely independent evolutionary processes for each
gene.

The Bayesian hierarchical model we have employed
adopts coalescent theory to formulate the distribution of
gene trees given the species trees. Our method is aimed at
the problems in which lineage sorting is the only source
of discrepancies between gene trees and species trees.
The user should remain cautious when using the BEST
technique to analyze the data in which gene flows such
as horizontal transfer or hybridization may have com-
monly occurred. The Bayesian hierarchical model as-

TABLE 5. The average and 95% credible regions for distances between the posterior distribution of species trees estimated with all four genes
and the posterior distribution of species trees estimated by leaving one gene out in the macaques data set.

S1 (without Y chromosome) S2 (without mtDNA) S3 (without C4 intron 9) S4 (without IRBP intron 3)

0.683 (0.597,0.768) 0.682 (0.607, 0.757) 0.664 (0.583, 0.746) 0.663 (0.580, 0.747)

sumes that gene split times are earlier than speciation
times. Thus, after-speciation gene flow may result in shal-
low branches in gene trees that strongly restrict the corre-
sponding speciation times and may mislead the species
tree estimation. A simulation study has found that in-
creasing the number of loci gives more accurate esti-
mates of the species tree under our assumption that deep
coalescence is the only reason for the conflicts between
the gene tree and species tree (Maddison and Knowles,
2006). However, there are other biological factors that
can affect the correspondence of species trees and gene
trees. For example, horizontal transfer and gene dupli-
cation/loss may cause conflicts between gene trees and
species trees. Unfortunately, it is challenging to model
the underlying mechanism of horizontal transfer or gene
duplication/loss without encountering problems with
parameter identifiability using molecular data. In addi-
tion, incorporating these events in the model will dra-
matically increase the number of parameters and result
in huge demand of computation. Further work should
permit incorporation of these issues into diagnostics of
model adequacy and into estimates of species trees pro-
vided they are rare across genes. Thus, this first version
of the Bayesian hierarchical model, based on coalescent
theory, is a good starting point that can easily be general-
ized to use more robust models of the coalescent process
that are available.

We have discussed the effect of priors of the effective
population size on species tree estimation. Three data
sets—finch, macaque, and yeast (Edwards et al., 2007)—
have been analyzed by the Bayesian hierarchical model.
In the results of theses analysis, the estimate of the topol-
ogy and divergence times of the species tree is reasonably
robust to changes in the prior of the effective population
size although naturally the estimate of the effective
population size itself will be affected. The model should
be used to estimate ancestral population sizes only with
extreme caution. The sensitivity of the estimates of the
population sizes to the prior implies that either the prior
is inappropriate or the information content in the data
is low or the likelihood is incorrect. Other empirical
analyses suggest that ancestral population sizes are dif-
ficult to estimate under a wide variety of circumstances
(Takahata, 1989; Yang, 1997; Jennings and Edwards,
2005).

In this paper, we did not exploit the use of possible
prior knowledge of the species trees. We used a birth-
and-death process as the prior of species trees. Further
work should incorporate other priors to see the effect on
the estimation of species tree and joint gene tree distribu-
tions. For example, we might use a more informed prior
centered on the distribution arising from other types of
data such as behavioral or morphological information or
we might use a less informed prior in which all species
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trees are equally likely within some bounds. Of course,
this choice should be left to the individual investigator,
but it is important to understand the relative contribu-
tion it plays in determining the posterior compared with
the information in the data. If it is desired to have the
phylogeny completely resolved by the data alone, then
the accumulation of more genomic data may be needed.

An important by-product of our model is the joint prior
of gene trees. Our model formulates the correlation struc-
ture of gene trees across different genes through coales-
cent theory and the birth-death process. The correlation
structure will be more realistic if our model includes key
factors such as horizontal transfer or gene duplication
and uses a more appropriate prior for the species tree
and population sizes. Thus, further research on model
formulation is necessary. But the most important thing
we stress here is the novel approach to estimating gene
trees by employing the joint development of gene trees
that are compatible with the species tree. Most current
approaches assume independent loci. It would be more
reasonable to assume the loci are conditionally indepen-
dent (given the species tree) but marginally dependent.
Our method suggests that gene trees and species trees
should be estimated simultaneously, and that likelihood-
based species tree estimation requires an explicit model
and corresponding algorithms not traditionally included
in phylogenetic analysis.
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