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Abstract. Under the coalescent model for population divergence, lineage sorting can cause considerable variability
in gene trees generated from any given species tree. In this paper, we derive a method for computing the distribution
of gene tree topologies given a bifurcating species tree for trees with an arbitrary number of taxa in the case that
there is one gene sampled per species. Applications for gene tree distributions include determining exact probabilities
of topological equivalence between gene trees and species trees and inferring species trees from multiple datasets. In
addition, we examine the shapes of gene tree distributions and their sensitivity to changes in branch lengths, species
tree shape, and tree size. The method for computing gene tree distributions is implemented in the computer program
COAL.
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The results of population genetic and phylogenetic studies
often depend upon the relationships between gene trees,
which represent the evolutionary histories of genes, and spe-
cies trees, which represent the evolutionary relationships for
a set of taxa. For example, in population genetic studies, the
probability that the gene tree topology is equivalent to the
species tree topology can be used to estimate ancestral pop-
ulation sizes (Wu 1991). In phylogenetics, a tree inferred
from a single gene reflects the evolutionary history of the
taxa in the study only if the gene tree and species tree have
the same topology.

Many aspects of biological evolution may result in a gene
tree that is not topologically equivalent to the species tree
for the same set of taxa, including horizontal gene transfer,
gene duplication, hybridization, and nonneutral evolution
(Hein 1993; Syvanen 1994; Maddison 1997; Sang and Zhong
2000). However, even when these forces are not present,
coalescent theory predicts that the topologies of gene trees
show considerable stochastic variation and that there is there-
fore a high probability that the topologies of the gene tree
and the underlying species tree will differ (Pamilo and Nei
1988; Takahata 1989). Distributions of gene tree topologies
given fixed species trees have been derived for trees with
fewer than five taxa under the coalescent model (Takahata
and Nei 1985; Pamilo and Nei 1988; Rosenberg 2002). This
paper presents a general method for computing these prob-
abilities for trees with an arbitrary number of taxa. This meth-
od is implemented in the computer program COAL, which
computes the probability of a gene tree given a bifurcating
species tree with the same number of taxa.

Although probabilities for gene trees can be simulated un-
der the coalescent model, computing them directly will help
in assessing the robustness of methods that assume the to-
pological equivalence of gene trees and species trees (Know-
les and Maddison 2002) and in understanding shapes of gene
tree distributions. For example, in a recent paper (Poe and
Chubb 2004), lack of congruence among gene trees was taken
as evidence for a hard polytomy in early Avian evolution.
Although the method proposed here does not model multi-
furcations (polytomies), the ability to calculate exact gene

tree probabilities for larger trees than previously possible will
enable the investigation of the effects of arbitrarily short
branches on gene tree distributions. These distributions can
also be used to implement Maddison’s (1997) proposal to
infer species trees in a maximum likelihood framework. This
approach is important because it incorporates information
from several genes without assuming that the datasets can
be concatenated and treated as a single gene, as advocated
by several others, for example, Rokas et al. (2003). Other
applications include testing phylogeographic hypotheses
(Knowles and Maddison 2002) and inferring population pa-
rameters (such as ancestral population size, Q; Felsenstein
2004).

BACKGROUND AND TERMINOLOGY

The coalescent process models divergence between gene
lineages by considering the time from the present, when the
genes are sampled, to the time when the genes diverged.
Looking at gene lineages from the present to the past, the
divergence between two lineages can also be called ‘‘a co-
alescence,’’ or ‘‘coalescent event.’’ Because it is sometimes
more convenient to refer to time backwards, starting from
the present, the words ‘‘before,’’ ‘‘after,’’ ‘‘beginning,’’ and
‘‘until’’ are sometimes used so that, for example, ‘‘before’’
means ‘‘more recently than.’’ The phrase ‘‘prior to’’ is used
to mean ‘‘more ancient.’’ For the problem considered in this
paper, only one gene is sampled per population, and intra-
specific variation is not modeled. In this case, coalescence
between two lineages can only have occurred either at or
prior to the time that their most recent ancestral population
diverged.

As an example, for the species tree in Figure 1a, although
B is more closely related to C than to A, the population that
was ancestral to B and C (but not to A) might have had two
lineages whose most recent common ancestor existed prior
to the root of the tree. In this case, the version of the gene
that survived in the B lineage might have been a direct de-
scendant of the lineage that gave rise to A, and the version
of the gene that survived in the C lineage might have been
a direct descendant of the lineage giving rise to D, E, F, and
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FIG. 1. (a,b) The species tree and gene tree, respectively, for the seven-taxon example, with internal nodes (equivalently, internal
branches) labeled according to a postorder traversal (Rosen 1999) so that no node has a lower number than any of its descendants. (c)
Another representation of the species tree. The bifurcation points (upside-down v’s), which are pointed to by the dotted lines in (c),
correspond to the nodes of the tree in (a). Note that (a) and (c) are drawn to the same scale, so that the branch lengths of (a) are the
same as the distances between the corresponding nodes of (c). (d) The gene tree with the branch lengths changed and curved so that it
can be superimposed on the species tree (c) to produce Figure 2a.

G. (See Fig. 2 for several scenarios in which this occurs.)
Therefore, even though B and C share a recent ancestral
population, the B and C lineages for the gene of interest are
only related by a much more ancient ancestral population.
Because this population must be at least as ancient as the
root, it must be ancestral both to the ((DF)(EG)) clade (with
which C has coalesced) and to A (with which B has coa-
lesced). In this case, lineage sorting causes the gene tree and
species tree to have different topologies. Because different
genes can have separate evolutionary histories, there is no a
priori reason to expect that gene trees based on different genes
should have the same topologies. By sufficiently changing
the branch lengths (and, for graphical purposes, allowing the
branches to bend), any gene tree can be made to fit within
any species tree (Fig. 1d). To see that this is always true,
note that there is always the possibility that none of the gene
lineages coalesce more recently than the root of the species
tree. If all lineages coalesce prior to the root, then the lineages
can coalesce in any order, thereby producing any desired
topology for the gene tree. As will be seen below, however,
gene trees with topologies radically different from that of the
species tree tend to have very low probabilities.

Coalescent theory, which models coalescent times for a
set of lineages, can be used to calculate the probability that
two or more lineages coalesce within a fixed amount time.
By treating the species tree (including branch lengths) as
fixed, one can calculate the probability that, for instance, two
lineages coalesce into one, or more generally that u lineages
coalesce into v lineages, within the amount of time deter-
mined by the length of the branch. This probability can then
be expressed as puv(T), where T is the length of the branch.

Here u $ v $ 1, and if u 5 v, then puv(T) is the probability
that no coalescences occur in the length of time T. In the
coalescent model, T 5 t/(2N), where t is the number of gen-
erations and N is the effective population size—the number
of diploid individuals—which is assumed to be constant (Ta-
jima 1983; Takahata and Nei 1985). An expression for this
probability was given by Rosenberg (2002) and was derived
earlier by several others (Tavaré 1984; Watterson 1984; Tak-
ahata and Nei 1985):

u k2v(2k 2 1)(21)
2k(k21)T/2p (T ) 5 eOuv v!(k 2 v)!(v 1 k 2 1)k5v

k21 (v 1 y)(u 2 y)
3 . (1)P

(u 1 y)y50

By counting the number of ways that a gene tree could
have arisen on the species tree and determining the puv(T)
term for each branch, one can calculate the probability of a
gene tree for a fixed species tree. This is feasible to do by
hand for small trees (e.g., fewer than six taxa). For larger
trees, the notation and concepts that follow can be used to
develop an algorithm for the computation.

This method requires keeping track of lineages from a gene
tree coalescing on branches of the species tree. The internal
nodes of the trees are labeled according to a postorder tra-
versal (Rosen 1999; Fig. 1). The terms ‘‘node’’ and ‘‘clade’’
are used interchangeably, so that, for example, the clade
((DE)(FG)) of the species tree in Figure 1a is called either
node 5 or clade 5. In addition, each branch has the number
of the node incident to that branch and closer to the tips of
the tree. For example, branch 5 of the species tree is the
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FIG. 2. Four of the 10 valid histories for the species and gene trees shown in Figures 1a and 1b, respectively. Each subfigure shows
one instantiation of the coalescent history. For example, (a) shows D and F coalescing to form (DF) before E and G coalesce to form
(EG), although the other order is also consistent with the gene tree topology. For the histories in (a) and (c) there are two instantiations.
The histories in (b) and (d) have one and 10 instantiations, respectively.

branch connecting clade 5 and the root. Note that rooted
bifurcating trees with n taxa have n 2 1 internal nodes (in-
cluding the root) and n 2 2 internal branches.

The phrase ‘‘clade k coalesces on branch b’’ is used to
mean that the two subclades of clade k on the gene tree,
which can be regarded as lineages, coalesce on branch b of
the species tree. For the trees in Figure 1, ‘‘clade 3 of the
gene tree coalesces on branch 5 of the species tree’’ means
that E and G, the two lineages in (EG), coalesce on branch
5 of the species tree. Although the tree in this example does
not have a sixth branch, the phrase ‘‘clade 5 coalesces on
branch 6’’ is interpreted to mean that the ((DF)(EG)) lineage
and the C lineage coalesce prior to the root.

A set of coalescences can be represented as a vector h 5
(h1, h2, . . . , hn22). Each element of h corresponds to an
internal node (or clade) of the gene tree (not including the
root), and the value of the element of the vector is the branch
of the species tree on which the clade coalesces. Hence hk

5 b if and only if clade k of the gene tree coalesces on branch
b of the species tree, with the interpretation that if hk 5 n 2
1, then clade k coalesces prior to the root. A vector h is called
a ‘‘coalescent history.’’

Not every vector h corresponds to a coalescent history that
is consistent with the gene and species tree topologies. To

be consistent with the gene tree and species tree, coalescences
between two lineages must occur at least as anciently on the
species tree as the most recent common ancestor of the lin-
eages coalescing. In addition, a coalescent history cannot
require a clade of the gene tree to coalesce more recently
than one of its descendants. A useful way of counting coa-
lescent histories is to propose a vector h and then to check
whether h corresponds to a history. If a proposed coalescent
history h is consistent with the gene and species trees, then
the history is ‘‘valid.’’ The use of ‘‘history’’ or ‘‘coalescent
history’’ without qualification refers to a valid history. For
the trees considered above, (2,6,5,5,5) is not a valid history
because clade 5 of the gene tree cannot coalesce on branch
5 of the species tree. Clade 5 of the gene tree can only co-
alesce prior to the most recent common ancestor (in the spe-
cies tree) of all taxa present in clade 5 of the gene tree: C,
D, E, F, and G. Because this most recent common ancestor
is the root of the tree, clade 5 can only coalesce prior to the
root. Hence h5 is necessarily 6 for any valid history for these
trees.

There are 10 valid histories (Table 1) for the species tree
and gene tree used above, four of which are shown in Figure
2. A more compact display of these histories, which depicts
all 10 histories simultaneously on the same tree, is provided
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FIG. 3. The set of coalescent histories can be represented more
compactly by showing, on each branch of the species tree, the clades
of the gene tree that coalesced on that branch. Branches that have
no coalescent events for any of the histories are left blank. The
coalescent histories are separated by semicolons, and an empty set
symbol indicates that for that history, nothing coalesced on that
branch. As an example, for the histories ordered as in Table 1, the
second coalescent history, (2,5,5,6,6), has clade 1 of the gene tree
coalescing on branch 2 of the species tree, clades 2 and 3 of the
gene tree coalescing on branch 5, and clades 4 and 5 coalescing
prior to the root. This method of representing all coalescent histories
can preserve information regarding the ordering of coalescent
events within a branch. The labeling (2,3,4; 2,3; 2; 3; ø; 2,3,4; 2,3;
2; 3; ø) on branch 5 suggests that for the first, second, sixth, and
seventh histories, the coalescent event forming the (DF) lineage,
which is clade 2 of the gene tree, occurred before the event forming
the (EG) lineage, which is clade 3 of the gene tree.

in Figure 3. The history (2,5,5,6,6) (Fig. 2a) indicates that
A and B coalesce on branch 2 of the species tree to form the
(AB) lineage, D and F coalesce on branch 5 to form (DF),
E and G also coalesce on branch 5 to form (EG), and the
remaining two clades coalesce prior to the root. If two or
more lineages coalesce on the same branch (or prior to the
root), then the coalescent history does not distinguish the
order of these coalescences. For the history (2,5,5,6,6), two
clades coalesce on branch 5, (DF) and (EG), and either order
is possible: either D and F coalesces first to form (DF) before
E and G coalesce, or E and G coalesce first to form (EG)
before D and F coalesce. Although there are also two coa-
lescent events on branch 6 (prior to the root), only one or-
dering is consistent with the gene tree because (DF) and (EG)
must coalesce to form ((DF)(EG)) before C can coalesce with
((DF)(EG)). Thus there are two ways for the history
(2,5,5,6,6) to occur that are consistent with the gene tree
topology. Orderings of coalescent events that are consistent
with the gene tree are referred to as different ‘‘instantiations’’
of the same history. Hence, there are two instantiations of
the history (2,5,5,6,6). Calculating the probability of a gene
tree requires counting how many orderings of coalescent
events on a given branch are ‘‘correct,’’ in the sense that
they are consistent with the gene tree topology. The number
of instantiations of a coalescent history depends on the num-
ber of correct orderings of coalescent events for each branch.

Given a fixed species tree, the probability of a gene tree
can be obtained by adding the probability of each valid his-
tory. The probability of a particular history can be determined
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from the probability of the events on each branch, using the
puv(T) terms from equation (1). Here the probability that u
lineages coalesce into v lineages on a specific branch must
also reflect the possibility that there might be more than one
way for these coalescences to occur. Assuming that all pos-
sible orderings, correct and incorrect, are equally likely (this
follows the model of Yule [1924]), and that u lineages have
coalesced into v lineages, the probability that the ordering of
events on the branch is consistent with the gene tree is the
number of correct orderings divided by the number of pos-
sible orderings. Multiplying the probabilities of the events
on different branches yields the probability of the coalescent
history for the entire tree. (These probabilities are not nec-
essarily independent because they depend on the events of
descendent branches. This will be discussed below.) Given
a list of coalescent histories and the probabilities of events
on each branch, the overall probability of a gene tree given
a species tree can be obtained.

Under the coalescent model, for a given n-taxon species
tree with topology c and vector of branch lengths l 5 (l1,
l2, . . . , ln22), where each lb is measured in units of 2N
generations, the gene tree topology G is a random variable
with probability mass function

n22w(h) w (h)bP (G 5 g) 5 p (l ). (2)O Pc,l u (h)v (h) bb bd(h) d (h)h∈H (g) b51 bc

The sum is over all histories h taken from the set Hc(g) of
all valid coalescent histories for the particular gene tree and
species tree. The product is taken over all internal branches
of the species tree, labeled 1, 2, . . . , n 2 2. The terms

, which can be determined from equation (1), arep (l )u (h)v (h) bb b

used to calculate the probability, for a particular coalescent
history h and a particular branch b, that ub(h) lineages co-
alesce into vb(h) lineages in the time lb, the length of branch
b. Here 2 # ub(h) # db, where db is the number of taxa for
which branch b is an ancestor, and 1 # vb(h) # ub(h). The
terms wb(h)/db(h) and w(h)/d(h) determine the probability
for each branch and prior to the root that the coalescent events
are consistent with the gene tree. Here wb(h) is the number
of ways that coalescent events on a branch can occur con-
sistently with the gene tree, and db(h) is the number of pos-
sible orderings of events.

The next two sections provide details for enumerating co-
alescent histories and for computing the necessary terms in
equation (2), and can be skipped without loss of continuity.
These are followed by discussions regarding the shape of
gene tree distributions, the number of coalescent histories,
applications, and possible extensions.

ENUMERATING COALESCENT HISTORIES

To enumerate the set of valid coalescent histories Hc(g),
each proposed coalescent history h can be identified with an
integer h 5 (hk 2 1) (n 2 1)n222k. The values of h aren22Ok51

at most (n 2 1)n22 2 1, which corresponds to the coalescent
history h 5 (n 2 1, n 2 1, . . . , n 2 1). This value of h
occurs when all clades of the gene tree coalesce prior to the
root. If a proposed history h is valid, then h ∈ Hc(g). The
problem of determining the set of valid coalescent histories

is to enumerate values of h for which 0 # h # (n 2 1)n22

2 1 and that correspond to valid histories.
To check whether a proposed coalescent history h 5 (h1,

h2, . . . , hn22) is valid, it must be the case that if hk 5 b, that
is, if clade k of the gene tree coalesces on branch b of the
species tree, then all of the taxa in clade k must be descendants
of branch b on the species tree. These restrictions on valid
coalescent histories can be summarized in a matrix M 5 (mij),
where mij 5 1 if clade j of the gene tree only includes taxa
that are also in clade i of the species tree; otherwise, mij 5
0. Therefore, a necessary condition for a coalescent history
h 5 (h1, h2, . . . , hn22) to be valid is that if hk 5 b, and if b
# n 2 2, then mbk 5 1 for all k 5 1, 2, . . . , n 2 2. Note
that any clade of the gene tree can coalesce prior to the root
of the species tree, and that the clade associated with the root
of the gene tree can only coalesce prior to the root of the
species tree. Consequently, we only need to keep track of
clades 1, 2, . . . , n 2 2 of the gene tree and branches 1, 2,
. . . , n 2 2 of the species tree, so the M matrix is (n 2 2)
3 (n 2 2).

For even a moderate number of taxa, the maximum value
of h, (n 2 1)n22 2 1, is unmanageably large. To reduce the
number of histories that must be evaluated, h can be incre-
mented more rapidly by skipping over large numbers of con-
secutively occurring histories that are not allowed. In par-
ticular, if the proposed coalescent history has the form h 5
(h1, h2, . . . , hk, 1, . . . , 1) with hk 5 b . 1 and mbk 5 0,
then that history is prohibited by the M matrix, as are all
remaining vectors that have hk 5 b. If the proposed histories
are enumerated sequentially, then the next (n 2 1)n222k 2 1
histories are invalid, and therefore do not need to be checked.
This greatly reduces the number of histories that must be
evaluated.

As an example of filling in the M matrix for Figures 1a
and 1b, consider m52. Because all taxa in clade 2 of the gene
tree are present in clade 5 of the species tree, a valid coa-
lescent history might have clade 2 of the gene tree coalesce
on branch 5 of the species tree. Therefore, m52 5 1. Filling
in the matrix yields

0 0 0 0 0 
1 0 0 0 0 

M 5 0 0 0 0 0 . (3) 
0 0 0 0 0 
0 1 1 1 0 

Recalling that any clade can coalesce prior to the root (i.e.,
branch 6), this M matrix specifies that clade 1 can only co-
alesce on branch 2 or 6; clades 2, 3, and 4 can only coalesce
on branch 5 or 6; and clade 5 can only coalesce prior to the
root.

A further restriction for a coalescent history h to be valid
is that if i and j are clades of the gene tree and j is an ancestor
of i, then i must coalesce more recently than j or on the same
branch of the species tree as j. Again, these restrictions can
be represented as a matrix R 5 (rij) where rij 5 1 if and only
if i is an ancestor of j on the gene tree; otherwise, rij 5 0.
A coalescent history h 5 (h1, . . . , hi, . . . , hj, . . . , hn22),
with 1 # i , j # n 2 2, is not permissible if hj , hi and j
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is ancestral to i. Note that numbering the branches by a post-
order traversal is crucial here.

Similarly, let S 5 (sij) be the matrix for the species tree
where sij 5 1 if node i is ancestral to node j; otherwise, sij

5 0. For the example above,

0 0 0 0 0 
0 0 0 0 0 

R 5 0 0 0 0 0 and (4a) 
0 1 1 0 0 
0 1 1 1 0 

0 0 0 0 0 
1 0 0 0 0 

S 5 0 0 0 0 0 . (4b) 
0 0 0 0 0 
0 0 1 1 0 

As an example of how the R matrix is used, consider the
proposed but invalid history h 5 (2,5,6,5,6). Although this
history does not violate the restrictions of the M matrix, it
is not a valid history because on the gene tree, clade 4 is an
ancestor of clade 3 (r43 5 1), and therefore clade 3 of the
gene tree must coalesce on the same branch or a descendent
branch from where clade 4 coalesces on the species tree.
Because h has h4 , h3, the proposed history is invalid.

To determine the set of valid coalescent histories, all vec-
tors h 5 (h1, h2, . . . , hn22) that satisfy 0 # h # (n 2 1)n22

2 1 can be enumerated, and those that violate restrictions
given by either the M or R matrices can be discarded. In
summary, h ∈ Hc(g) if and only if: (1) for all k 5 1, . . . , n
2 2, if hk # n 2 2, then 5 1; and (2) for all i, j ∈ {1,mh kk

2, . . . , n 2 2}, if hj , hi, then rji 5 0. Computational savings
similar to the case of the M matrix can be achieved by skip-
ping over proposed histories with the pattern h 5 (h1, . . . ,
hi, . . . , hj, . . . , hn22) where hj , hi and rji 5 1. For the
seven-taxon example gene tree and species tree, the valid
coalescent histories are listed in Table 1. (Note that by taking
advantage of the postorder traversal labeling and the fact that
these matrices are lower triangular, the R and S matrices can
be represented as (n 2 2)-dimensional vectors, r and s, rather
than (n 2 2) 3 (n 2 2) matrices. Let rk 5 0 if the kth row
of the R matrix has only zeros; otherwise, let rk be the min-
imum value of j that satisfies rkj 5 1. The definition of sk is
analogous.)

THE PROBABILITY OF A COALESCENT HISTORY

Because a fixed, valid coalescent history h 5 (h1, . . . ,
hn22) is assumed in this section, the notation that indicates
dependence on h can usually be dropped.

Calculating (lb)pu vb b

To calculate (lb), one can first determine the subscriptspu vb b

ub and vb and then apply equation (1). The subscript ub is the
number of lineages present at the beginning of branch b of
the species tree, that is, the number of lineages on a branch
before any coalescent events have occurred. This is equiv-
alent to the number of taxa present in clade b of the species
tree minus the number of coalescent events on branches de-

scended from branch b of the species tree. Using the postorder
traversal labeling, node 1 necessarily has two descendants,
and for b . 1, the number of taxa db in clade b of the species
tree is

b21

d 5 2 1 s . (5)Ob by
y51

For b . 1,

b21 n22

u 5 d 2 I(h 5 y)s , (6)O Ob b k by
y51 k51

where I(hk 5 y) 5 1 if clade k of the gene tree coalesces on
branch y of the species tree; otherwise, I(hk 5 y) 5 0. For b
5 1, ub is necessarily 2.

The subscript vb is the number of lineages still remaining
on the branch after all coalescences have occurred, which is
ub minus the number of coalescent events on branch b:

n22

v 5 u 2 I(h 5 b). (7)Ob b k
k51

Because the species tree branch lengths lb are known,
(lb) can be determined from equations (1), (6), and (7)pu vb b

for any particular coalescent history, h.

Calculating wb and db

If a branch has at least one coalescent event, then there is
a possibility that the events on that branch are inconsistent
with the gene tree topology. The coefficients wb and db reflect
the probability that the coalescences within a branch are con-
sistent with the gene tree. Here wb is the number of correct
orderings for the coalescent events within a branch, and db

is the number of possible orderings (including incorrect or-
derings). Assuming that all possible orderings of lineages are
equally likely, wb/db is the probability that the coalescent
events on branch b are consistent with the gene tree.

If ub 5 vb, then there are no coalescences on branch b, and
wb 5 db 5 1. Also, if ub 5 2 and vb 5 1, then there is one
coalescent event on that branch, but only one coalescent event
is possible (the two lineages coalesced), so there is no pos-
sibility that the coalescent event occurs in the wrong order,
and again wb 5 db 5 1.

When there are more than two lineages at the beginning
of a branch and there is at least one coalescent event, so that
ub . 2 and ub . vb, then the probability that the coalescences
are consistent with the gene tree is strictly less than one. If
ub 5 vb 1 1 (i.e., if there is exactly one coalescent event),
then there is only one possible ordering, and again wb 5 1.
However, if ub . vb 1 1, there may be more than one way
for the coalescences to occur. As an example, for the seven-
taxon case given above and the history (2,5,5,6,6), because
branch 5 on the species tree has lineages D, E, F, and G
coalescing into two lineages, (DF) and (EG), either D and F
coalesced first, meaning closer to the tips of the tree, or E
and G coalesced first. Because there are two correct orderings
for these two coalescent events, the numerator of the coef-
ficient of p42(l5) is w5 5 2.

In general, if the number of coalescent events on branch
b is cb and if there are no restrictions on the ordering of the
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coalescences, then wb 5 cb!. (Note that cb is just ub 2 vb.)
To check whether there are restrictions, one must check
whether any of the clades coalescing is an ancestor of another
clade. For example, ((DF)(EG)) is an ancestor of (EG).

These restrictions are provided by the R matrix. Let b1,
b2, . . . , be the clades coalescing on branch b of the speciesbcb

tree. Recall that a clade bj can coalesce before clade bi only
if . If there have not been any coalescences on branch-r 5 0b bj i

es descended from branch b of the species tree, then the
number of ways, wb, for the coalescences on branch b to
occur can be obtained directly from the appropriate rows of
R. In particular,

cb 1
w 5 c ! . (8)Pb b n22

y51 1 1 rO b zy
z51

This formula is explained in Appendix 1.
If there have been coalescences more recent than branch

b on the species tree, however, then an updated version of
the R matrix is needed. Here the R matrix is only used to
count the number of restrictions for the ordering of coalescent
events within a branch, so what is needed is a matrix R(h) 5
( ) for which if branch i of the gene tree is ancestral(h) (h)r r 5 1ij ij

to branch j of the gene tree, and clade j did not coalesce more
recently than i on the species tree; otherwise, . Using(h)r 5 0ij

this updated matrix (which must be recomputed for each co-
alescent history), the above formula still holds:

cb 1
w 5 c ! . (9)Pb b n22

y51 (h)1 1 rO b zy
z51

(Updating R with R(h) solves the dependence problem be-
tween the branches alluded to earlier because the events on
a particular branch b are independent of the events on other
branches given the information contained in R(h), ub, and vb

regarding events on branches descended from b.) Letting cn21
be the number of coalescent events more ancient than the
root and wn21 :5 w be the number of correct orderings of
coalescent events more ancient than the root, equation (9)
still holds for b 5 n 2 1.

The number of instantiations of a coalescent history is the
product of the wb terms taken over all the branches:

cn21 n21 b y
w 5 . (10)P P Pb n22

b51 b51 y51 (h)1 1 rO b zy
z51

Here products from one to zero are considered to be one. See
Graham et al. (1994, pp. 62, 106, 501–502) for discussions
about conventions regarding empty products and sums. Be-
cause the ordering of coalescent events is independent be-
tween branches, each instantiation of a coalescent history is
equally likely.

The denominators, db, are more straightforward. If there
is at least one coalescence on branch b, then consider any
one of the orderings of coalescences counted by wb. If there
are cb coalescent events on branch b and ub lineages at the
beginning of the branch, then there are ( ) possible coales-ub

2
cences as the first coalescent event. In the seven-taxon tree

example, consider the case that branch 5 of the species tree
has D and F coalescing into (DF) first, followed by E and G
coalescing into (EG). Of the four lineages, D, E, F, and G,
the probability that two chosen at random are D and F is
1/( ). Given that D and F have coalesced, there are three4

2
lineages, (DF), E, and G, that must coalesce into two. The
probability that E and G coalesce before (DF) coalesces with
either E or G is 1/( ). The denominator of the coefficient of3

2
p42(l5) is therefore d5 5 ( ) 3 ( ).4 3

2 2
If the coalescent events on a particular branch are labeled

k1, k2, . . . , , then the probability that k1 occurs first iskcb

1/( ); the probability that k2 happens second, given that k1
ub
2

occurred first, is 1/( ); and the probability that the coa-u 21b2
lescent event happened last, given that events k1, k2, . . . ,kcb

have already occurred, is 1/( ). The probability thatu 2c 11b bkc 21 2b

a set of coalescent events on a branch occur in a particular
order is therefore (for cb . 0):

c 21b1 1
5 . (11)P

d y50b u 2 yb1 22

The quantity db is essentially the same as In,k in Rosenberg
(2003).

For coalescent events prior to the root, 1/d is the probability
of any particular ordering. Let 1/dn21 :5 1/d. Then letting
un21 be the number of lineages prior to the root (before any
coalescences prior to the root), equation (11) still holds with
b 5 n 2 1. The term un21 is 1 1 I(hk 5 n 2 1). In then22Ok51
example seven-taxon gene tree and species tree, the 10 valid
coalescent histories are shown graphically on the species tree
in Figure 3. Table 1 lists these histories and their probabil-
ities. For trees with long branches, most of the probability
of the gene tree is determined by histories that have coales-
cences as close to the tips as possible; trees with shorter
branches have more of the probability on histories with deep
coalescences. As an example, the first history listed in Table
1, which has the fewest deep coalescences, accounts for more
than two-thirds of the probability when the species tree has
branch lengths of 1.0, but less than one-half of the probability
when the species tree has branch lengths of 0.5.

THE PROBABILITY MASS FUNCTION Pc,l(G 5 g)

Substituting equations (6), (7), (9), and (11) into (2) yields
the full formula for the probability of a gene tree for a given
species tree. To simplify the formula, let p (l )u (h)v (h) n21n21 n21
:5 1. (Because there is no branch ancestral to the root, ln21
is, strictly speaking, meaningless, or ln21 can be considered
infinite.) Then

P (G 5 g)c,l

21c (h) n22b
(h)c (h)! 1 1 rP Ob b (h)zyn21 [ ]y51 z51

5 p (l )O P u (h)v (h) bc (h)21 b bbh∈H (g) b51 u (h) 2 yc bP 1 22y50

n21 p (l )u (h)v (h) bb b5 .O P
c (h) n22bh∈H (g) b51c 1 u (h) 2 y 1 1b(h)1 1 rP O b (h)zy 1 25 6[ ] 2yy51 z51

(12)
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FIG. 4. Gene tree distributions for five-taxon species trees. Each plot shows the exact probability for all 105 gene trees in the distribution.
For each plot, the gene trees are sorted by their probabilities. (The ordering of gene trees is not necessarily the same in the different
plots.) The spikes in the distributions are for the gene trees with the same topology as the species tree.

Gene tree distributions for five-taxon trees (Figs. 4, 5) show
the effects of branch lengths and symmetry in the species
tree. A tree is said to be maximally symmetric when for each
node b of the tree, if b has a total of 2db descendants, then
each of its two children has db descendants; and if b has 2db

1 1 descendants, then one child has db descendants, and the
other child has db 1 1 descendants. The seven-taxon species
tree shown in Figure 1a is an example of a maximally sym-
metric tree. A tree is said to be maximally asymmetric if for
each node of the tree, at least one of the children of that node
is a tip.

Figure 4 depicts the effect of decreasing all branch lengths
simultaneously on the tree. For all of these distributions,
although the gene tree with the highest probability has the
same topology as the species tree, this probability is below

0.5, and diminishes rapidly as branch lengths decrease. In
general, longer branches result in distributions that are con-
centrated on a smaller set of trees. To illustrate this pattern,
Table 2 shows the number of gene trees necessary to capture
90% of the gene tree distribution for different branch lengths
and different numbers of taxa.

Figure 5 shows that having one short branch anywhere on
the tree results in several trees that are nearly tied for the
highest probability, regardless of the shape of the species
tree. Gene trees with more symmetry can have higher prob-
abilities because there are fewer restrictions on the orderings
of coalescences. For Figures 5c and 5e, the gene tree with
the same topology as the species tree has the second highest
probability. The panels on the left side use ((((AB)C)D)E)
as the species tree, and for Figure 5c, the gene tree with this
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FIG. 5. Gene tree distributions for five-taxon trees with one short branch. As in Figure 4, gene trees are sorted by their probabilities.
In (c) and (e), the gene tree with the species tree topology has the second highest probability.

topology has probability 0.1505, while the gene tree with
topology (((AB)(CD))E) has probability 0.1572. Similarly,
for Figure 5e, the gene tree with the species tree topology
has probability 0.1723, while the gene tree with topology
(((AB)C)(DE)) has probability 0.1837. For the other four
panels in this figure, the highest probability gene tree is the
one that matches the species tree.

THE NUMBER OF COALESCENT HISTORIES

The number of valid coalescent histories that have to be
considered for a particular gene tree depends on the size of
the trees, the degree of similarity between the species and
gene trees, and tree shape (the degree of symmetry in the
trees). Gene trees that are similar to species trees have the
largest numbers of histories. Those that differ radically from
the species tree have very few valid histories (often only one),

even for trees with a large number of taxa. Asymmetric spe-
cies trees tend to generate a larger number of valid coalescent
histories than symmetric species trees, even for gene trees
that are not topologically equivalent to the species tree (Fig.
6). Table 3 shows the number of coalescent histories that
must be evaluated to compute the probability that the gene
tree is topologically equivalent to the species tree. This is
given both for trees that are maximally asymmetric and for
trees that are maximally symmetric.

When the gene and species trees have the same topology
and the trees are maximally asymmetric, the number of his-
tories can be shown to be the Catalan number C(n 2 1),
where n is the number of taxa, and C(n) 5 ( )/(n 1 1) 52n

n

(2n)!/[n!(n 1 1)!] (Graham et al. 1994). Using Stirling’s ap-
proximation (Feller 1968), the number C(n) can be shown to
be asymptotically equivalent to 4n/( n3/2). Thus, the num-Ïp
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FIG. 6. The number of coalescent histories for each gene tree in the gene tree distribution. For each plot, the gene trees are sorted by
the number of valid coalescent histories.

ber of histories grows more slowly in the number of taxa
than the number of tree topologies, (2n 2 3)!! (Felsenstein
2004). For an arbitrary sequence of tree topologies, c3, c4,
. . . , cn, . . . , where cn has n taxa, larger trees do not nec-
essarily have more coalescent histories than smaller trees.
For example, the 10-taxon symmetric tree has fewer histories
than the nine-taxon asymmetric tree (Table 3). However, if
a sequence of tree topologies is generated by splitting tips
of successive trees, then the number of histories at least dou-
bles with each taxon added (Appendix 2). A consequence is
that for maximally symmetric trees, a conservative lower
bound for the number of histories, and therefore the number
of terms needed to compute the exact probability, is 2n22.
This makes it difficult in practice to compute the probabilities
of gene trees given species trees when there is a large number

of taxa, even with an algorithm available. A very conservative
upper bound on the number of histories can be obtained by
considering the number of proposed histories that do not
violate the conditions of the M matrix given above in the
section on enumerating coalescent histories. For any partic-
ular gene and species tree (not necessarily with the same
topology), this upper bound is

n22 n22

1 1 m . (13)P O i j1 2y51 j51

For the seven-taxon example trees, equation (13) yields 16
as the upper bound for the number of histories.
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TABLE 2. The minimum number of gene trees needed to capture
90% of the gene tree distribution as a function of the type of sym-
metry of the species tree (a, maximally asymmetric; s, maximally
symmetric), the number of taxa (n), and branch lengths. In the first
three branch length columns, all branches have the indicated length.
The fourth and fifth columns have all branches with length 1.0
except the indicated branch. Note that the minimum number of gene
trees listed grows more slowly than the number of tree topologies
based on the number of taxa (see Table 3).

Sym-
metry n

Branch lengths

1.0 0.5 0.2 l1 5 0.01 ln22 5 0.01

a 4 4 7 10 7 9
a 5 13 27 58 19 21
a 6 33 118 345 51 61
a 7 96 512 2239 140 155
s 4 4 10 12 10 10
s 5 15 35 62 21 26
s 6 38 144 441 63 87
s 7 140 869 3452 207 363

TABLE 3. The number of valid coalescent histories when the gene
tree and species tree have the same topology. The number of his-
tories is also the number of terms in the outer sum in equation (12).

Taxa

Number of histories

Asymmetric trees Symmetric trees Number of topologies

4 5 4 15
5 14 10 105
6 42 25 945
7 132 65 10,395
8 429 169 135,135
9 1430 481 2,027,025

10 4862 1369 34,459,425
12 58,786 11,236 13,749,310,575
16 9,694,845 1,020,100 6.190 3 1015

20 1,767,263,190 100,360,324 8.201 3 1021

FIG. 7. The exact probability of topological equivalence between
species and gene trees as a function of branch lengths and number
of taxa. Probabilities were computed for branch lengths between
0.01 and 5.00 in increments of 0.01. Only asymmetric trees were
used for this example. Symmetric trees show a very similar pattern
(results not shown).

APPLICATIONS

Probability of Topological Equivalence of Gene Trees and
Species Trees

Because the complete distribution of gene trees for a given
species tree is available, the probability that the gene tree
has the same topology as the species tree can be computed
directly. Figure 7 shows the probability that the gene tree is
topologically equivalent to the species tree when branch
lengths vary continuously from 0.01 to 5.00 (assuming all
branches have the same length) for different numbers of taxa.
This figure can also be used to determine the branch lengths
that would be necessary to have any desired probability that
the gene tree and species tree are topologically equivalent.
Note that even for moderately long branches, the probability
of topological equivalence quickly decreases with the number
of taxa.

Pamilo and Nei (1988) give a conservative upper bound
for this probability,

n22 2
2l iP 5 1 2 e . (14)PA 1 23i51

From equation (12), the probability of any three-taxon gene
tree matching its species tree is 1 2 , and the bound is2li⅔e
based on decomposing an n-taxon species tree into n 2 2
three-taxon trees, one for each internal branch, and treating
these trees as independent. Here each three-taxon tree con-
sists of an internal branch, its two descendent branches, and
its sister branch. For example, in the seven-taxon tree ex-
ample, the three-taxon tree corresponding to branch 5 has the
branches 2, 3, and 4, and could be represented as (2,(3,4)).

The closeness of this bound to the exact probability can
be evaluated for different tree shapes and sizes as well as
branch lengths using equation (12). Because the assumption
of independence is more nearly met, as Pamilo and Nei (1988)
note, when the branch lengths are larger, the bound is tighter
for trees with longer branches. The bound is also tighter for
trees that are more nearly symmetric (Fig. 8), because for
asymmetric trees lineages are more constrained in their order
of coalescence and are therefore less independent. Although

the bound is fairly close when the branch lengths are mod-
erately large, as the number of taxa increases and branch
lengths are held constant, the ratio of the bound to the exact
probability increases (Fig. 8). This indicates that the bound
is not asymptotically approaching the exact probability.

Notice that Pc,l(G 5 c) and PA only refer to the probability
that a random gene tree has the same topology as the fixed
species tree. For a given observed gene tree, the coalescent
model does not provide a method for determining the prob-
ability that the species tree has the same topology as the gene
tree. Because the coalescent model treats the species tree as
a parameter, one could adopt a Bayesian point of view to
assign probabilities to species trees given gene trees. This
would require assigning a prior distribution on the space of
species trees, where the space would include branch lengths
as well as topologies.
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FIG. 8. The ratio of the upper bound given by equation (14) to
the exact probability.

Inferring the Species Tree

Another application for the method derived here, suggested
by Maddison (1997), is inferring the species tree given data
for multiple genes in a maximum likelihood framework. Let
s 5 (c,l) be the species tree with topology c and vector of
branch lengths l, and let GTD(s) denote the gene tree dis-
tribution with parameter s. Then consider a random sample
of q gene trees, G1, G2, . . . , Gq, which are independent and
identically distributed (i.i.d.) with distribution GTD(s) and
with associated datasets D1, D2, . . . , Dq, each of which is
an alignment of n sequences from the same set of taxa. If the
ith gene tree topology has vector of branch lengths ti, the
density value for the branch lengths given the gene tree to-
pology and ancestral population sizes Q, fQ(tizGi), can be ob-
tained from Yang (2002). Assuming that the datasets are in-
dependent, the likelihood of a species tree given the data is

l 5 l(s z D , . . . , D ) (15a)1 q

5 P (D , . . . , D ) (15b)s 1 q

q

5 P (D ) (15c)P s x
x51

q

5 P (D z G 5 g , t )P (G 5 g , t ) (15d)P O s x x x x s x x x
x51 g ,tx x

q

5 P(D z G 5 g , t )P (G 5 g , t ) (15e)P O x x x x s x x x
x51 g ,tx x

q

5 l(g , t z D ) f (t z G )P (G 5 g ). (15f)P O x x x Q x x s x x
x51 g ,tx x

Thus

q

l 5 l(g , t z D ) f (t z G )P O x x x Q x x
x51 g ,tx x

n21 p (l )u (h)v (h) bb b3 ,O P
c (h) n22bh∈H (g ) b51c x 1 u (h) 2 y 1 1b(h)1 1 rP O b (h)zy 1 25 6[ ] 2yy51 z51

(15g)

where l(gx, txzDx) is the likelihood of the xth gene tree given
the xth dataset. This is the standard likelihood used in phy-
logenetic inference and depends on the model of evolution
as well as the branch lengths of the gene trees. Maximizing
the likelihood requires maximization over the space of gene
trees (and perhaps model parameters), including all possible
sets of branch lengths. In this case, the sum should beOg ,txx

interpreted as an integral over this space. Note that the step
from (15d) to (15e) assumes that the distribution of the xth
dataset depends on the species tree only through the xth gene
tree. Rannala and Yang (2003) derive the joint density for
the branch lengths and topology of the gene tree, and use
this to implement a Bayesian MCMC algorithm to find pos-
terior densities for species divergence times and ancestral
population sizes.

DISCUSSION

Generalizations

The method presented here can be extended in several ways
to allow for more complex models. For example, the model
used in this paper assumes population sizes within branches
are constant. A more complicated model could be obtained
by allowing the effective population size to vary for different
branches or by allowing the effective population size to be
a function of time (Kingman 1982; Felsenstein 2004). This
would modify the puv(T) terms from equation (1) without
changing the general algorithm.

Another assumption of the method used for this paper is
that on a given branch, if there are more than two lineages
present, every possible pair of lineages has an equal proba-
bility of coalescing first on that branch. This corresponds to
the Yule model (Yule 1924; Aldous 2001; Rosenberg 2003),
and could be modified so that the probability that two lineages
coalesce in a given amount of time is a function of the sim-
ilarity of the two lineages (e.g., according to an evolutionary
distance measure). This would require modifying the
wb(h)/db(h) and w(h)/d(h) terms in equation (2), but would
not alter the enumeration of histories or the calculation of
the puv(T) terms.

Tree Shape and Branch Lengths

Tree shape (of both the gene tree and species tree) and
branch lengths (of the species tree) both clearly have an effect
on gene tree distributions. Effects of branch lengths on the
probability of topological equivalence have been discussed
earlier (Tajima 1983; Takahata and Nei 1985; Pamilo and
Nei 1988), but the tree shape, in particular the degree of
symmetry in both the species tree and gene tree, is also im-
portant, especially if the species tree has short branches. Ro-
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senberg (2002) notes that the probability that the gene and
species trees have the same topology is higher for symmetric
trees. Gene tree distributions are generally flatter when
branch lengths of the species tree are small, but this effect
is more pronounced for asymmetric than for symmetric trees
(Fig. 4).

Gene trees with a high degree of symmetry have fewer
restrictions on the order of coalescent events on branches
deep within the species tree. A counterintuitive consequence
is that when the Yule model is used, the gene tree with the
highest probability does not necessarily have the same to-
pology as the species tree. This can occur when the gene tree
has more symmetry than the species tree and when there are
short branches. This phenomenon is illustrated in Figure 5
as a result of one extremely short branch, but it can also
occur if all branches are sufficiently and uniformly short. For
example, if the species tree has topology c 5 (((AB)C)D)
and all branch lengths are 0.1, then Pc,l(G 5 c) 5 0.1037,
but Pc,l(G 5 ((AB)(CD))) 5 0.1279. Because long branches
correspond to small effective population sizes, the probability
that the gene and species trees have the same probability
increases dramatically when population sizes are small.

Bayesian Extensions

Although gene trees as well as species trees are generally
unknown and need to be estimated, gene trees are usually
easier to estimate than species trees. When a species tree is
desired but only a gene tree is available, a natural question
to ask is whether the species tree has a high probability of
having the same topology as the gene tree. Similarly, if sev-
eral gene trees are available, but they conflict, then it is nat-
ural to ask about the distribution of possible species trees.
As mentioned above, however, under the coalescent model
the species tree is treated as a parameter and not a random
variable. There is a strange asymmetry in thinking of gene
trees as random and species trees as fixed. One could argue
that evolution is a stochastic process that generates both spe-
cies trees and gene trees and that both kinds of trees should
therefore be considered random.

Questions regarding the distribution of the species tree can
be answered in a Bayesian framework where a prior distri-
bution is specified that includes information regarding both
the species tree topologies and their branch lengths. If one
is willing to assume a prior distribution for species trees,
other interesting questions can be answered. For example,
one could obtain the unconditional probability of a gene tree
by averaging (integrating) over the space of species trees.
Similarly, this approach could be used to find expected dif-
ferences between two random gene trees. In addition, species
trees could be inferred using Bayesian methods instead of
maximum likelihood by finding the species tree with the high-
est posterior probability. More importantly, because this ap-
proach would result in a posterior distribution on the set of
possible species trees, it could be used to find a set of trees
that captures most of the posterior distribution.

Computational Considerations

The number of coalescent histories is also the number of
terms in the outer sum in equation (12). The amount of time

needed to compute gene tree probabilities therefore depends
on this number, which is a function not only of the number
of taxa but also of the amount of topological agreement be-
tween the gene and species trees, and the degree of symmetry
in the trees. For the case of the gene and species trees having
the same topology, the computation of the gene tree proba-
bilities for the 16-, 18-, and 20-taxon maximally asymmetric
trees took approximately 2.1, 34.9, and 581.8 min, respec-
tively (as implemented in COAL running on LINUX on a
Dell [Round Rock, TX] Precision Workstation 530 with a
1.7 GHz Xeon processor [Intel, Santa Clara, CA]). For max-
imally symmetric trees, the same numbers of taxa took 0.1,
1.5, and 18.6 min, respectively. For trees with much more
than 20 taxa, and especially for applications that require eval-
uating many trees such as species tree inference, methods
can be used to approximate (12), such as importance sampling
on the set of coalescent histories (Robert and Casella 1999).
Note also that the vector representation of coalescent histories
allows the set of histories to be partitioned so that parallel
computing techniques can be used to evaluate equation (12).

Conclusions

This article presents the gene tree distribution for any fixed,
bifurcating species tree under the coalescent process as well
as a method for computing this distribution directly. The
ability to compute gene tree distributions for larger trees than
previously possible will allow the natural variability of gene
trees to be better understood in the absence of nonneutral
evolution, horizontal transfer, hybridization, gene duplica-
tion, and other evolutionary forces. The automated compu-
tation of gene tree distributions also makes possible appli-
cations such as inferring species trees using either maximum
likelihood or Bayesian approaches.

Although the method presented here allows only one sam-
pled gene per species, this should be seen as a step toward
the more general problem of determining the probability of
a gene tree when intraspecific sampling is also considered.

All calculations in this paper were made using the program
COAL, which is available at http://www.coaltree.net or by
request from the authors.
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APPENDIX 1

The term wb is the number of ways of arranging c objects, b1,
b2, . . . , bc, where there are restrictions on the ordering of the c
objects. These restrictions can be described by noting, for each
object bj, the objects that must precede bj. In general, if bj is con-
strained to appear after m objects, the number of arrangements of
the c objects satisfying this constraint is c!/(1 1 m). (This can be
seen by symmetry; given 1 1 m objects, there is the same number
of sequences with any of the 1 1 m objects occurring last.) The
constraint that bj appears after the objects , . . . , is independentb bj j1 m
of the possible constraints of the objects , . . . , .b bj j1 m

In general, if a 5 (a1, . . . , ac), where aj is the number of objects
that must precede the jth object, then the restrictions of the jth
object reduce the number of arrangements by a factor of 1 1 aj.
The total number of arrangements is therefore

c 1
c! . (A1)P

1 1 aj51 j

Note that equation (A1) is the same as (8), which is used for com-
puting wb, where aj is the sum of the bjth row of the R matrix, and
bj is the jth clade that coalesces on the branch.

APPENDIX 2

Consider a sequence of tree topologies c3, c4, . . . , cn, . . . , where
cn has n taxa labeled A1, A2, . . . , An, and the (n 1 1)st topology
is obtained from the nth topology by replacing tip Ai with clade
(Ai ) for some i # n. Let the clades of cn be labeled 1, . . . , n 2A9i
2. Let the corresponding clades of cn11 have the same labels as cn,
and let (Ai ) be labeled zero. Let coalescent histories for the (nA9i
1 1)-taxon tree be represented by y 5 (y0, y1, . . . , yn22); that is,
let the indexing start at zero instead of one. We still have the
interpretation that yk 5 b means that clade k coalesces on branch
b, but now we allow k 5 0 and b 5 0. If the node immediately
ancestral to Ai on the n-taxon tree is bi, then for any history (h1,
h2, . . . , hn22) of the n-taxon tree, (0, h1, h2, . . . , hn22) and (bi, h1,
h2, . . . , hn22) are valid histories on the (n 1 1)-taxon tree. Therefore,
any such sequence of topologies has the number of histories at least
doubling for each taxon added.


