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ABSTRACT 
A genealogical  relationship among genes at a locus (gene tree) sampled  from three related 

populations was examined with  special reference to population  relatedness  (population tree). A 
phylogenetically  informative event in a gene tree constructed from nucleotide differences consists of 
interspecific coalescences of genes in each of which  two genes sampled  from different populations  are 
descended from a common ancestor. The consistency  probability between gene and  population trees 
in  which  they  are  topologically  identical was formulated in terms of interspecific coalescences. It was 
found that the consistency  probability  thus derived substantially  increases  as the sample  size of genes 
increases,  unless  the divergence time of populations is  very long compared to population  sizes. Hence, 
there  are  cases  where  large  samples  at a locus  are very useful in inferring a population tree. 

T HE  nucleotide  differences  among  genes at a locus 
drawn  from  a species contain useful information 

about how these  genes evolved from  a  common  an- 
cestor. A genealogical relationship  (gene tree) con- 
structed  from such nucleotide  differences is a visual 
way of representing  the evolutionary history of genes, 
through which not only the mechanisms of evolution 
of genes  but also the evolutionary history of the spe- 
cies can be  inferred.  Furthermore, if orthologous 
(homologous) genes are drawn  from  different species 
or populations, the nucleotide  differences can be used 
to infer  the phylogenetic relationships of the species 
or populations (species or population  tree). 

However,  even in the absence of gene flow, a  gene 
tree does  not necessarily show the same topological 
pattern as  does  a  population tree (TAJIMA 1983; TAK- 
AHATA and NEI 1985; NEIGEL and AVISE 1986; NEI 
1987).  This  discordance stems from  the fact that 
orthologous  genes in different  populations generally 
diverged  much  earlier  than  population splitting. Tak- 
ing  into  account this possibility, NEI (1987)  derived  a 
simple formula  for  evaluating  the probability that  the 
topology of a tree  for  three  orthologous genes, sam- 
pled from  three  different populations, is the same as 
that of the population  tree.  More  recently, PAMILO 
and NEI (1988)  extended  the study of this problem to 
situations with more  than  three  populations involved 
and those with more  than  one  gene  sampled  from 
each population. They concluded that  the consistency 
probability between  gene and population  trees be- 
comes considerably smaller if internodal  branches of 
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the population tree  are  short  and  that this probability 
cannot  be substantially increased by increasing the 
number of genes sampled from  a locus. 

In this paper, I shall address  the same  problem as 
did PAMILO and NEI (1988), and show that  their 
conclusion, which seems rather discouraging to  exper- 
imentalists, is largely due  to  the limited study of small 
sample sizes and  the  criterion they used. It is impor- 
tant  to clearly distinguish two qualitatively different 
nodes in a  gene  tree. Each node (coalescence in the 
mathematical study of genealogy) (KINGMAN 1982) 
corresponds to a  bifurcation of a  gene in the  repro- 
duction process. A coalescence may be due  to genes 
belonging to  the same population or  to different  pop- 
ulations. These will be called intraspecific and  inter- 
specific coalescence, respectively. The occurrence of 
interspecific coalescence is a key event in a  gene  tree 
that can occur only before two populations involved 
have diverged  from  a  common  ancestor, and  there- 
fore it directly reflects  population  relatedness. Focus- 
ing  on this event, I develop  a  theory  relevant to  the 
present  problem and supplement the result with a 
simulation. It is then shown that sampling many genes 
from each population can indeed increase the consist- 
ency probability substantially, allowing us to correctly 
infer  a  population  tree. 

MODEL AND THEORY 

The species considered here is monoecious and 
diploid.  Generations are discrete and nonoverlapping, 
and  for convenience  they are counted backward 
chronologically from  the  present  time. The species 
consists of three populations X ,  Y ,  and Z which  se- 
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FIGURE 1 .-Model of a  population  tree  and  a gene tree generated 
on a computer. X ,  Y and Z represent  three different populations 
which diverged t l  and t l  + t~ generations ago. Five genes were 
sampled  from  each  population  and tl  = tn = 2N were  assumed.  Dots 
and  lines  represent genes and  ancestral  lineages. Each node corre- 
sponds to a  coalescence of genes. A, B and C stand for interspecific 
coalescences  and all other nodes for intraspecific coalescences. In 
this  simulation,  there  remained  four  ancestral genes from X and Y 
at tl. Note that the probabilities  that  the  first  and the first  two 
coalescences  are  intraspecific  are 1/3 and 1/9, respectively. 

quentially diverged  from  a  common  ancestral  popu- 
lation tl and tl + t 2  generations ago (Figure 1) .  T o  be 
analytically accessible, two basic assumptions are 
made:  neutrality (KIMURA 1968) and  random  mating 
in each population. An additional assumption is that 
a  gene  tree  constructed  from  nucleotide  differences 
is not subject to sampling errors which stem from 
comparisons of only a  finite  length of nucleotides. In 
other words, it is assumed that stochastic errors in- 
volved  in a  gene  tree  are solely due  to  random sam- 
pling drift. 

Assume that each ancestral or descendant popula- 
tion consists of N selectively equivalent diploid indi- 
viduals. Each descendant  population at tl or tl + t2  is 
formed by 2N gametes  randomly sampled with re- 
placement from  the  gamete pool of the  parental pop- 
ulation. T o  study the problem  concerning  the  rela- 
tionships between gene  and population  trees, we begin 
with the case  of two populations X and Y which di- 
verged t l  generations  ago. Suppose that we randomly 
draw r and s genes at a locus from X and Y,  respec- 
tively, and  trace back the ancestry  until the time of 
the population splitting, tl generations  ago.  Ortholo- 

gous  genes in different  populations evolve independ- 
ently in the absence of gene flow and hence  their 
common  ancestor are  found  prior  to  the population 
splitting. Suppose  that there existed m(n) distinct 
ancestors of r(s) sampled genes t l  generations  ago.  Of 
interest here  are  the probability and time in  which a 
particular type of coalescence occurs in the ancestral 
population. Previously TAKAHATA and NEI (1985) 
showed that  the two closest genes in a sample can be 
used for  estimating the divergence  time of popula- 
tions. However, they did  not distinguish intraspecific 
and interspecific coalescences. Since intraspecific co- 
alescence can occur in a  descendant  population, the 
two closest genes in a sample does  not give precise 
information about  the divergence  time of populations. 
On the  other  hand, interspecific coalescence can occur 
only before  the  population  splitting  and set an  upper 
bound of t l .  Thus it is interesting to know the proba- 
bility and time in  which interspecific coalescence oc- 
curs. 

If there a r e j  = m + n distinct genes for a sample of 
size r + s immediately after  the population  splitting, 
they must have been derived  from  a single common 
ancestor throughj - 1 sequential  bifurcations of genes 
in the ancestral  population. In general, it is possible 
that  more  than two genes can be  derived  from  a single 
parental  gene, but this probability is very  small for 
large N (KINGMAN 1982; TAJIMA 1983). Also, it is 
possible  in our model of population splitting that j 
genes are derived  from the same genes in the previous 
generation, t l  ago.  However, as discussed in TAKA- 
HATA and NEI (1985), this probability is also very 
small and can  be  neglected.  Hence we assume that 
only bifurcation of genes is allowed and  that  the 
number of distinct genes at tl  is the sum of the  number 
of distinct ancestors  for  a sample from two descendant 
populations. 

Our first concern is with the probability, Q j r ,  that 
the first j - k coalescences occurring in the ancestral 
population ofXand Yare intraspecific. In  the ancestral 
population, there  are two types of genes which are 
distinguished by whether  their  descendants  belong to 
X or Y. In  the present case, there  are j genes at t~ 
containing m genes of one type and n genes of a 
different type. When these j genes  were  derived  from 
j - 1 genes by the first bifurcation, we randomly 
choose two from j genes and link them if they were 
of common  type, or intraspecific. We continue this 
process j - k times. Then Q j k  is the probability that 
we can trace successfully or intraspecifically back to k 
genes, or it is the probability that  the  number of 
coalescences back to  the first interspecific coalescence 
is greater  than k. To compute Q j k ,  we define  the 
probability that two genes randomly chosen from 
mo(l d mo d m )  and no( 1 d no 5 n)  genes are of 
identical type, and  denote it by P(m0, no). P(m, n) = 1 
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corresponding to Q .. = 1 ( j  = m + n ) ,  which reflects 
the  boundary  condition  that  there is no interspecific 
coalescence if there is no coalescence at all. Let k be 
mo + no. 

Now  we derive  a  recurrence  equation  for P(m0,  no). 
We note  that when a coalescence takes place among k 
genes, there  are k(k - 1)/2 different ways of pairing k 
genes. If mo genes are a  result of all intraspecific 
coalescences, then  there  are mo(mo - 1)/2 different 
ways  of pairing  for the  next intraspecific coalescence. 
Likewise, there  are no(n0 - 1)/2 different ways of 
intraspecific coalescence for no genes. Thus we have 

J. 

for 1 5 mo S m and 1 5 no S n ,  and otherwise 
P(mo, no) = 0. The analytical solution of ( 1 )  may be 
found with boundary values 

and P(m,  no) which can  be  obtained  from  the  right 
hand side of (2) if  we exchange n and m and replace 
mo by no, respectively. For  instance, in the case of 
m = n = 2, we have 

P(1, 2) = P(2, 1)  = 1/6,  P(1, 1 )  = 1/9.  (3) 

Unfortunately,  the  general solution becomes rather 
untidy so that we use ( 1 )  numerically. 

From ( l ) ,  we can compute  the probability, Q j k ,  that 
the first j - k coalescences are intraspecific by 

Q j k  = P(r,  k - r )  (4) 
r 

where the summation is taken  over r ranging  from 1 
or k - n (whichever is larger)  to k - 1 or m (whichever 
is smaller). In relation to  the example given in (3), we 
have 

4 4 3  = P(1,  2) + P(2, 1 )  = 1/3, 
(5) 

Q42 = P(1, 1)  = 1/9 

(Figure 1) .  
Some numerical results of (4) show that Q j k  de- 

creases rather quickly as k decreases (Table l) ,  imply- 
ing  a rather high probability of interspecific coales- 
cence occurrence. T o  see this in a slightly different 
way, we define D , h  as 

Djk = Q j . k + I  - Q j k  (6) 

for 1 S k S j - 1. This is the probability that  the first 
interspecific coalescence occurs exactly when the 
number of distinct ancestors becomes k. For  instance, 
D,,,-1 = 2mn/[  j (  j - l ) ]  ( j = m + n )  gives the proba- 

bility that  one of the m genes and  one of the n genes 
are descended  from  a  common  ancestor. If m = n = 
1 ,  D Z 1  = 1 since the coalescence is necessarily inter- 
specific for two genes  from  different populations. 

We are now at a position to evaluate the  distribution 
of the time at which the first interspecific coalescence 
amongj genes  occurs in the ancestral  population. We 
denote this random time by Sj, and  define A as the 
random  number of distinct ancestors o f j  genes at S,. 

above.  Denote by Tk the waiting time  until k genes 
coalesce to k - 1 genes, whose distribution is expo- 
nential with mean 4N/[k(k - l)]  (KINCMAN 1982). For 
given A, we thus have 

Thus  Prob ( A  = k) = D;k = Q , , k + l  - Q j k  as mentioned 

Sj = T j  + 7,-1 + . . . + T A + ~  (7) 

and  the continuous  time version of the probability 
density is given by (4) in TAKAHATA and NEI (1985). 
In  particular,  the  mean of Sj conditioned on A = k is 

(e.g. ,  KINCMAN 1982; TAJIMA 1983; TAVAR~ 1984), 
so that  the unconditional mean of S, becomes 

j -  I 

Thus E(Sj)  2 4N/[ j (  j - l)] always holds true, implying 
that  the unconditional  mean of S, (Table 1)  is longer 
than  that  between  the two closest genes in TAKAHATA 
and NEI ( 1  985). By the same  token,  the unconditional 
probability density of S, can be  computed by 

j -  1 

p (S j )  = p(S j  I A = k)Djk (10) 
k= I 

where p(S j  IA = k) is the probability density of S, 
conditioned on A = k. 

Now recall that  the  three populations X ,  Y and 2 
have a phylogenetical relationship  as in Figure 1 ,  and 
assume that  both  the topology and branch  lengths are 
known. We are interested in the probability that a 
gene  tree has the same topology as that of the  popu- 
lation tree.  It is to  be  noted, however,  that when more 
than  one  gene is drawn  from  each  population,  the 
meaning of gene  tree becomes equivocal because these 
genes  often show different  evolutionary  relationships 
among  different  populations. PAMILO and NEI (1 988) 
considered  a composite gene  tree  for such cases, which 
is constructed by computing  the  average  divergence 
time of genes  taken  over all pairwise comparisons 
between any pair of populations. It is not easy, how- 
ever, to compute  these  average  divergence times be- 
cause they depend  on  the topology of the  gene tree. 
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j = (m, n)" E ( S j ) b  Ratio' 2 3 4 5 6 7 8 

4 = (2, 2) 0.388  2.33 0.111 0.333 1 
4 = (3, 1) 0.500 3.00 0.167 0.500 1 
5 = (3, 2) 0.266 2.67 0.050 0.150 0.400 1 
5 = (4, 1) 0.400 4.00 0.100 0.300 0.600 1 
6 = (3, 3) 0.174 2.60 0.020 0.060 0.160 0.400 1 
6 = (4, 2) 0.200 3.00 0.027 0.080 0.200 0.467 1 
6 = (5, 1 )  0.334 5.00 0.067  0.200 0.400 0.667 1 
7 = (4, 3) 0.126 2.64 0.010 0.029 0.074  0.181  0.429 1 
7 = (5, 2) 0.158  3.33 0.016  0.048 0.1 14 0.254 0.524 1 
7 = (6, 1) 0.286 6.00 0.048  0.143 0.286 0.476  0.714 1 
8 = (4, 4) 0.090 2.51 0.004  0.012 0.032  0.078  0.184  0.429 1 
8 = (5, 3) 0.098 2.73 0.005 0.015 0.039  0.092 0.209 0.464 1 
8 = (6, 2) 0.130 3.67 0.0 10 0.03 1 0.07 1 0.153  0.306 0.571 1 
8 = (7, 1) 0.250  7.00 0.036  0.107 0.214 0.357 0.536  0.750 1 

a Asymmetry for m and n, givenj = m + n, increases the probability of intraspecific coalescence. 
* E(&) is measured in units of 2N generations. 
' Ratio of E(S,) to expected waiting time until the first coalescence  given by 2/[( j (  j - I)]. 

This appears to be the main reason why PAMILO and 
NEI (1988) considered only two genes  from each 
population. As sample size increases, a similar com- 
putation of the average  divergence  time seems ex- 
tremely  tedious,  though  not  intractable.  Another 
problem is concerned with the metric they used. As 
shown below, an  average may not always be an  appro- 
priate  measure because it overshadows minor  relation- 
ships of genes that may be phylogenetically informa- 
tive. It is thus necessary to reexamine  the consistency 
probability between gene  and  population  trees in 
more  detail. 

A key quantity is the probability that  at least one 
interspecific coalescence occurs during  the process in 
which j genes are derived  from k distinct ancestors, 
given by 

H. = 1 - Q/k. Ik ( 1   1 )  
Suppose that we draw r and s genes  from  populations 
X and Y as before. Interspecific coalescence of these 
genes can occur  prior  to  population splitting t l  gen- 
erations ago. But if  it occurs only prior  to  the diver- 
gence between the common  ancestral  population of X 
and Y and population 2, tl + t z  generations  ago, the 
consistency between gene  and  population  trees is 
nothing  more  than  expected by mere chance (NEI 
1987). Although such a coincidence must be  taken 
into account in inferring  the topology of a  population 
tree, we will neglect it for  the  moment. 

On  the  other  hand, if at least one interspecific 
coalescence occurs between t l  and tl + 12, it becomes 
certain that populations X and Y are closer phyloge- 
netically than 2, since genes  from Z coalesce to those 
from X or Y necessarily before t l  + t 2 .  In this situation, 
we  say that  a  gene  tree is consistent with a  population 
tree.  This probability is given by (1 l), provided that 

there existed j = m + n distinct ancestors of r and s 
genes at t l  and  that  there were j - k coalescences 
between tl and t l  + t ~ .  The distribution of the  number 
of distinct ancestors k at t 2  in a  stationary  population 
for  a sample of size j ,  gjk(t2), was derived  independently 
by T A V A R ~  (1 984), DONNELLY (1  984), and TAKAHATA 
and NEI (1985) in  which the relationship between 
g j h ( t 2 )  and p(Sj J A  = k) in (10) was also given. Using 
(1 1) and gjk ( t2 ) ,  we obtain the consistency probability 
between gene  and  population  trees or  the probability 
of at least one interspecific coalescence, 

j- 1 

p = gjk(t2)Hjk. (12) 
k= 1 

For m = n = 1 and  thusj = 2, (12) becomes gZI(t2) = 
1 - exp(-t2/(2N)) since HZ, = 1. For m = n = 2, it 
becomes 

p =g41(tz) -k 8/9g4z(tz) + 2/3 g43(t2) 
= 1 - 115 e - - f ~ / ( 2 N )  (1 3) 
- 113 e-3t2/(2N) - 71 1 5  e-4t2/N. 

When t2 /N << 1, the  ratio of P for m = n = 2 to  that 
for m = n = 1 is about 5, implying a relatively high 
probability of occurrence of interspecific coalescence 
f o r m >  1 a n d n >  1. 

We have assumed that  the  numbers of distinct genes 
m and n at t l  are known. However, they are actually 
random  numbers which again follow the same proba- 
bilistic law as in (12). Using gTm(tl) and gs,(tl), and 
recalling the  independence of the genealogical proc- 
esses  in isolated populations X and Y,  we finally obtain 
the consistency probability in terms of Hjk as 

7 s j - I  

p = g,n(tl)gs,(tl)gjk(tZ)Hjk (1 4) 
m=l n=l k=I 
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TABLE 2 

Consistency  probability, P, between gene and  population  trees 
computed from (14) 

t, l(2Wb 

(s, r). t d ( 2 N ) b  0.05 0.5 5 

(1, 1) Any 0.049 0.394 0.993 

(2, 2) 0.5 0.118 0.628 0.999 
0.05 0.169 0.762 0.999 

5 0.049 0.396 0.993 

0.05 0.604 0.989 1.0 
( 5 ,  5 )  0.5 0.261 0.846 0.999 

5 0.050 0.399 0.993 

0.05 0.929 1.0 1 .o 

5 0.050 0.400 0.993 
(10, 10) 0.5 0.371 0.921 1.0 

Sample genes from population X and Y. 
* Populations X ,  Y and their ancestor are assumed to have had a 

constant 2N genes in each population through time. The divergence 
time between X and Y is tl generations ago,  and their common 
ancestor is assumed to have branched off from population Z, t l  + t:! 
generations ago. 

wherej = m + n. Numerical values of (14)  for various 
values of parameters are given in Table 2. 

SIMULATION AND RESULT 

The genealogical process considered in the previous 
section was realized on a  computer because an  exten- 
sion of PAMILO and NEI (1988)  to  the case of more 
than two genes  from  each  population is very tedious 
and  therefore  the difference in their  and  our consist- 
ency probabilities is hard  to evaluate analytically. A 
brief account of the simulation used is as follows. 

Let r ,  s, and t be  the  numbers of genes  sampled 
from  the  current populations X ,  Y ,  and 2, respectively. 
Let 7r,t be  the holding  time or waiting time in which 
a  pair of genes in X ,  Y or 2 coalesce to  the most recent 
common  ancestor. This time is xponentially distrib- 
uted with mean 2/q,,, in units of 2 ,, generations  where 

q,,t = T(T  - 1) + S(S - 1) ‘+ t(t - 1). (15) 

Equation 15 is a  consequence of the  independent 
evolution of genes in different isolated populations 
and  the assumption of sufficiently large N compared 
with sample size. This also implies that  the probability 
that  a coalescence occurs in X ,  Y and 2 is respectively 
given by 

k 

p X  = r(r - l) /qrst ,  PY = s(s - l)/qrsf, (16) 

PZ = t ( t  - I)/qrst. 

T o  simulate this stochastic (death) process, we gener- 
ate uniform and exponential  random  numbers. A 
uniform  random number  determines  the  population 
in  which a coalescence occurs  according to  (1 6) and 
two additional  numbers are used to  determine a  pair 
of coalescing genes in that population. An exponential 

random  number  determines how long the coalescence 
takes. This process reduces  the  number of distinct 
genes by one,  and it is repeated  until  the  number of 
distinct genes becomes one  for  the first time. How- 
ever, when the cumulative coalescence time  T  taken 
over  the  repetition  first exceeds TI or TI + T2 
[T, = t1/(2N)  and T2 = t2/(21V)], it is necessary to take 
account of changes in population structure (Figure  1). 
When there remain m and n distinct genes at T I  in 
the ancestral  population of X and Y ,  and  there remain 
k distinct genes in 2, (1  5) and  (1  6) should be modified 
to 

q j k  = j ( j  - 1) + k(k - l), j = m + n 
(1 7) 

PXY = j ( j  - l ) / q j k ,  P Z  = h(h - 1)/qjk 

from T I  to T1 + T2. Likewise a similar modification 
should  be  taken when T reaches  TI + T2 prior  to 
which there exists only one panmictic population. In 
the simulation, it is also necessary to  record each 
coalescence time and population in which the ances- 
tral lineages of sampled genes  reside. A simulation 
program which allows construction of the  gene ge- 
nealogy for  an  arbitrary sample size is available upon 
request. 

In  the case of r = s = t = 1 and  TI = T2 = 1, (14) 
or  the  argument  about  (1 3) leads to P = 1 - exp(-T2) 
= 0.632 while a simulation with lo4  repeats yielded P 
= 0.636.  In  the case of r = s = t = 2 and  TI = T2 = 1, 
(14)  predicts P = 0.744 while a simulation yielded 
P = 0.742. There is very close agreement between 
the theoretical and simulation results. On  the  other 
hand, if  we compute  the P values following PAMILO 
and NEI’S distance (hereafter  denoted by Pd) in the 
above two examples, we have 0.759  and 0.805 for 
one  and two genes  from each population, respectively. 
The value of Pd was computed as follows. Let dxY, dYZ 
and d, be the average  divergence times of genes  from 
three pairs of different populations. These average 
divergence times are computed in the following way. 
For  a  pair of genes sampled from  different popula- 
tions, we can define  the  time  at which there existed 
the most recent  common  ancestor. The time is aver- 
aged  over all pairwise comparisons,  providing d be- 
tween a  pair of populations. The consistency proba- 
bility is then  defined by 

Pd = Prob(dxY C dYZ and dm C dxZ), (18) 

that is the probability of occurrence of gene  trees in 
which the average  genetic  distance  between X and Y 
is smaller than  that  between  the  other two combina- 
tions of populations. The difference  between Pd = 
0.759 and P = 0.632  for a three  gene sample is that 
Pd includes the  factor  1/3 exp(-T2) = 0.123  that we 
have ignored as mentioned  earlier. By the same token, 
the difference  between the values of P and Pd for a 
six gene sample can be partly explained.  However, 
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TABLE 3 

Consistency  probabilities  between gene and  population  trees 
(simulation  results  with 10’ repeats) 

0.05 

0.5 

5 

0.05 

0.5 

5 

0.05 

0.5 

5 

0.05 

0.5 

5 

1 
2 
5 

10 

1 
2 
5 

10 

1 
2 
5 

10 

1 
2 
5 

10 

1 
2 
5 

10 

1 
2 
5 

10 

1 
2 
5 

10 

I 
2 
5 

10 

1 
2 
5 

10 

0.049 0.384 0.384 
0.198 0.462 0.426 
0.602 0.727 0.433 
0.913 0.939 0.426 

0.379 0.575 0.575 
0.760 0.814 0.726 
0.993 0.994 0.806 
1 .O 1.0 0.863 

0.994 0.998 0.998 
0.998 0.999 0.999 
1.0 1.0 1.0 
1 .O 1 .o 1 .o 

0.040 0.363 0.363 
0.118 0.401 0.370 
0.258 0.529 0.384 
0.347 0.563 0.386 

0.395 0.588 0.588 
0.640 0.757 0.697 
0.865 0.903 0.713 
0.921 0.952 0.716 

0.983 0.991 0.991 
0.999 0.999 0.999 
0.999 1.0 1 .O 
1.0 1.0 1 .O 

0.045 0.367 0.367 
0.054 0.360 0.361 
0.048 0.344 0.344 
0.061 0.365 0.363 

0.390 0.589 0.589 
0.403 0.596 0.594 
0.378 0.593 0.592 
0.363 0.584 0.585 

0.992 0.993 0.993 
0.996 0.998 0.998 
0.997 0.997 0.997 
0.992 0.993 0.993 

P ,  P* and P d  are defined in ( 1  4), (1 9) and (1 8) ,  respectively. 

there is another  factor  that causes the  difference. In 
PAMILO and NEI, there is an unresolvable case. It is 
“unresolvable” because their  theory  does  not  take 
account of the  order  and time of coalescences in the 
ancestral  population.  However, in actual  data as well 
as simulations, we can always determine  them  and 
hence classify a gene tree  into  either  a consistent or 
inconsistent class. Noting  these  differences and  the 
probability of an unresolvable class ( R  = 0.083, see 
Table 2 in their  paper), we can account  for the differ- 
ence between the values of P and Pd. Simulation 
results for  the same sets of parameter values as in 
Table 2 are presented in Table 3. 

DISCUSSION 

We will first discuss some characteristics of the 
consistency probability P,  defined based on the inter- 

specific coalescence of genes (Table 2). As expected, 
if the time between the first and second population 
splitting ( t 2 )  is long, the P value is close to 1 regardless 
of sample sizes. A sufficient condition  for P to  be close 
to  1 is that t 2  is not smaller than  10N. In this case, a 
gene  tree is almost surely consistent with the popula- 
tion tree  and  there is no  need  to increase sample sizes 
for  a reliable estimate of the population  tree.  For 
smaller values of t 2 ,  on  the  other  hand,  the P value 
strongly  depends on sample sizes and t l  (the diver- 
gence  time  between the two closest populations). 
When t l  is small and  the sample size is large, there 
remain many ancestors of genes sampled from  popu- 
lations X and Y at  the time of their  divergence. Then 
some of these  ancestors will interspecifically coalesce 
during t l  and tl 3- t 2 ,  making the P value high.  For 
instance, P = 0.929 in the case of t l  = t 2  = 0.1N  and 
a sample of 10  genes  from each population.  Compared 
with the case of a sample of one  gene  from each 
population ( P  = 0.049),  there is a  dramatic increase 
in the P value by increasing sample size. However, 
when t l  is large, the P value does  not increase substan- 
tially. In this situation, there remains only one ances- 
tor of genes from each population and  the P value 
remains the same as that  for a sample of one  gene 
from each population. Thus, in general when tl does 
not  much  exceed N generations,  a  large sample can 
substantially increase the P value, making it  possible 
to correctly  infer the population  tree. 

The above conclusion is different  from  that in 
PAMILO and NEI (1988). There  are two reasons for 
this discrepancy: actually they did not consider  a sam- 
ple of more  than two genes  from each population and 
used Pd defined by genetic distances between different 
populations. This restriction and  criterion  are con- 
nected to each other because the computation of 
genetic distances requires  information on  the topology 
of gene  trees which are very difficult to analyze for 
arbitrary sample sizes.  Recall that  the  genetic  distance, 
defined by the average  divergence  time of genes sam- 
pled from  different  populations, is calculated based 
on all pairwise comparisons, in  which  all  possible to- 
pologies of gene  tree  should  be  taken  into  account 
(e.g., see TAKAHATA and NEI 1985). Because  of this 
difficulty in the calculation of genetic distances, sim- 
ulations were conducted  and  the results are given in 
Table 3 and Figure 2. The Pd value shows a rather 
weak dependence  on sample size  in a wide range of 
values of t l  and t 2  even when the P value sharply 
increases as  sample size increases. This insensitivity of 
Pd to sample size is due  to its definition. As mentioned 
earlier,  genetic distance tends to overshadow minor 
but phylogenetically useful information in a  gene  tree. 

A large discrepancy between the values of P and Pd 
makes us suspicious about using the genetic  distance 
in inferring  a  population  tree.  It is more promising to 
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FIGURE 2,”Sample size dependence of the consistency probabil- 
ities obtained by simulations. The probabilities are defined in three 
different ways. Open triangles represent the probability P that at 
least one interspecific coalescence occurs during t~ and tl  + t z  (see 
Equation 14 in text), while open circles represent P d  based on the 
average divergence times in  all  pairwise comparisons of genes from 
different populations. Open squares represent the probability P* 
that the time on the first interspecific coalescence of genes from X 
and Y is shorter than  that from X and Z and from Y and Z. Here 
t ,  = 0.2N and t 2  = 0.4N. 

use interspecific coalescences instead. For  this end, 
one problem  arising  from the fact that a  population 
tree is actually unknown must be solved. If the diver- 
gence times tl and t2 of populations are unknown, it 
is uncertain  whether the first interspecific coalescence 
(point A in Figure  1)  occurred during  the time be- 
tween t ]  and tl  + t ~ .  A  gene  tree  constructed  from 
nucleotide  differences  does not have such a  time ruler 
as  depicted in the  ordinate in Figure 1. However, it 
does tell us the  order of the first interspecific coales- 
cences from  different pairs of populations. This is 
information we can use in inferring  the  population 
tree.  Let TA be the first interspecific coalescence time 
for  genes  from  population X and Y,  and 78 that  for 
population Z and X (or Y )  (7A I t l  and 78 B tl  + t2). 
We are  interested in the probability of 7 A  < 78 in a 
gene  tree  and use it to  infer  the  population  tree: 

P* = PrOb(TA < 78) 

= PrOb(7~ < tl + t2 5 78) (1 9) 
+ Prob(tl + t2 5 7~ < 78) 

= P + Q .  

The first term of the  right  hand side in (19) is the 
probability that we formulated in (1 4), and  the second 

term  corresponds  to  the  event  that 7 A  is smaller than 
78 by mere chance.  For  a sample of one  gene  from 
each population, P = 1 - exp(-t2/(2N)) and Q = 1/3 
exp(-t2/(2N)) so that P* = 1 - (2/3) exp(-t2/(2N)) as 
derived in NEI (1987). The P* value for  arbitrary 
samples was obtained by simulation (Table  3  and 
Figure 2). By definition P* L P ,  and it is clear  that P* 
has the  same  dependence  on sample sizes as P ,  al- 
though  a  large  difference  between P* and P is ex- 
pected when most interspecific coalescences occur 
before t l  + t 2 .  

The values of T1 = t1/(2N)  and T2 = t2/(2N) in 
Figure  2  were chosen to mimic the population tree of 
three  human races (NEI and ROYCHOUDHURY 1982; 
PAMILO and NEI 1988). It is remarkable in this figure 
that P* = 0.9 is attained  for  a sample of five genes 
from each population  whereas Pd is about  0.6  and 
stays around  the same value for  further increases in 
sample size.  NEI (1985,  1987)  presented a phyloge- 
netic tree of 10 mtDNAs  from  each of Caucasoid ( X ) ,  
Mongoloid ( Y ) ,  and  Negroid (Z), and suggested using 
average  numbers of nucleotide  differences between 
different  populations for finding the  order of popu- 
lation splitting. The average  nucleotide  differences 
were then  estimated  as dxy  = 0.308%, dYZ = 0.416% 
and dxz = 0.379% (see Table 111 in  NEI 1985). If we 
assume that  the average number of nucleotide  differ- 
ences is in proportion to  the  average divergence  time 
of genes  (genetic  distance),  these  figures in fact sup- 
port  the closer relationship  between Caucasoid and 
Mongoloid, but  the Pd value for this example is only 
0.6 (Figure  2).  However, if we take  a close look at  the 
gene  tree given in Figure 10.5 in NEI (1987) with 
respect to interspecific coalescences, the condition  for 
(1  9) is satisfied so that we can assert the same phylo- 
genetic relationship  among three  human races with 
90% confidence. T o  show this large  difference be- 
tween P* and Pd, Figure  3 was drawn.  This is a  gene 
tree  generated on  a computer  under  the same  condi- 
tion as in Figure  2 with a sample size  of 10  for each 
population. It demonstrates  a case where dxy  > dyz or 
dxz but 7 A  < 78, and is a typical pattern of gene  tree 
expected under neutrality.  We  thus  conclude  that  a 
population tree can be  inferred  more reliably by using 
interspecific coalescences than by using genetic dis- 
tance. 

We have assumed that populations are in a  station- 
ary  state. If a  population  undergoes  a  bottleneck, 
genes at a locus drawn  from  a  current  population may 
have been derived from  a  common  ancestor  that 
existed during such a  contracted phase of population 
size. Bottlenecks disrupt  the  stationarity of population 
and hence may change  a  gene  tree in a significant 
way. Here we assert only two things in order  for  the 
effects of bottleneck to be manifest in gene genealogy. 
First, it must occur relatively recently. If the occur- 
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FIGURE 3."Gene  tree  generated 
on  a  computer. Ten genes were sam- 
pled from each of three populations, 
and t ,  = 0.2N and tP = 0.4N were 
assumed. In this simulation, d x y  = 
6.ON, dyz = 5.7N and dxz = 6.5N were 
observed.  Thus the closer relation- 
ship between Y and Z is indicated in 
terms of the average divergence 
times of genes, which  is inconsistent 
with the population tree. By contrast, 
this gene tree becomes consistent in 
terms of interspecific coalescences 
(Note points A ,  B and C). 
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rence is sufficiently long  time ago compared with the 
current population size, most genes were derived  from 
a common ancestor which existed after  the  bottleneck 
and thus the genealogy is independent of such a 
remote  event. Secondly, even if a  bottleneck  occurred 
recently,  the effect can be seen only when the  duration 
time is long enough  compared with the  reduced pop- 
ulation size. For  instance, if the  reduced  population 
size is 100, then  the  required  duration  time is also at 
least about  100  generations (APPENDIX). Clearly, the 
effect of bottlenecks on the consistency probability 
depends on when and how strongly they have oc- 
curred in the history of populations. 

Now  we ask a question on sampling strategy: Is it 
necessary to examine many independent loci or suffi- 
cient  to  examine many genes at a single locus? The 
answer depends on whether we use genetic distance 
or interspecific coalescence, as well as on the values 
of tl  and t 2 .  If we use genetic  distance, we come to  the 
same conclusion as PAMILO and NEI (1  988):  to  obtain 
a reliable population tree,  one must study many genes 
which have evolved independently of each other. As 
demonstrated  above, this is largely due  to  the  poor 
performance of the metric used. If on the  other  hand 
we use interspecific coalescence, we come to a  differ- 
ent conclusion. T o  argue this point  quantitatively, 
assume that n independent loci were examined and 
consider the probability PT that  at least one of the loci 
shows consistency between gene  and population  trees, 
where P is used for  the consistency probability. The 
reason for using P is that if at least one  of  the loci 
shows interspecific coalescence between tl and tl + t z ,  
the  order of population  splitting becomes certain. In 
this sense, we do not follow the majority rule as in 
SAITOU and NEI (1  986) in  which the  correct popula- 
tion tree is regarded  as  the  one  represented by the 
largest number of  loci. Then we have a simple formula 

Pj- = 1 - (1 - P)". (20) 

. .  
a3 0.1 o 

For  a sample of one  gene  from each population, PT 
becomes 1 - exp(-nT2) so that  for PT to be  larger 
than  0.95, n must be  larger  than 3/T2.  Thus n > 60 
for T2 = 0.05  and n > 15  for T2 = 0.2. Although  these 
numbers may not  be  too unrealistic, recall the case  of 
T2 = 0.2 in Figure 2 where 10 genes at a locus can 
confirm the closer relationship between X and Y when 
we find T A  < TB in the  gene  tree (P* zz P in this 
situation). Thus large samples at a locus can  provide 
very useful information on a  population  tree. More- 
over,  large samples allow us to estimate  population 
sizes  which are indispensable parameters in any the- 
ory. The only situation in  which the present  method 
does  not work is where tl is large but t 2  is small relative 
to population sizes. It is, however, the case where  the 
three populations practically diverged around  the 
same time and sampling several independent loci does 
not resolve the  problem  either. 

We have studied the consistency probability be- 
tween gene  and population  trees, assuming that  there 
are  no stochastic errors in a  gene  tree  other  than those 
caused by random  drift.  In  practice, any gene  tree 
constructed  from  nucleotide  differences involves sto- 
chastic errors owing to mutations. It is therefore in- 
teresting to see whether our conclusion remains true 
when mutational errors  are  incorporated. I conducted 
a simulation in  which mutations following Poisson 
processes are superimposed on a  gene  tree  and ex- 
amined P* and Pd in terms of nucleotide  differences 
(Figure 4). It was assumed that 2Nv = 10  where tl is 
the mutation rate  per  gene  (or linked DNA segment) 
per generation. Since TI = 0.1 and T2 = 0.2 were 
used as in Figure 2, the average  number of mutations 
that  accumulate per  gene  during  these times 
amounted to 1 and 2, respectively. These  numbers 
are  indeed very  small relative to  the  extent of intra- 
populational  variation, yet  it is clear that  the sample 
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FIGURE 4."Consistency probabilities P* (open squares) and p d  

(open circles) when they were defined in terms of nucleotide differ- 
ences. As in Figures 2 and  3, t ,  = 0.2N and tz = 0.4N but  the 
mutation rate v is assumed to be 5/N per  gene  per  generation. 

size dependence of P* and P d  is essentially the same 
as  before. If we reduce  the value of 2Nv, however, 
the P* value diminishes, implying that a  large  number 
of linked nucleotide sites must be  examined (SAITOU 
and NEI 1986). In  the case of human  mtDNA,  the 
average  nucleotide  difference per site within the pop- 
ulation is about 0.36% so that  the  number of nucleo- 
tide sites examined must be about 2,800 for 2Nv to 
be 10. Together with this requirement,  the  present 
theory will hopefully help  improve  experimental  de- 
signs for  the  problem  treated in this paper. 
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APPENDIX 

We  assume  that  the size of  a diploid  population  changes 
abruptly t l  and t l  + t 2  generations  ago, with the  population size 
being N I  for 0 5 t 6 t l ,  N2 for t ,  < t S t l  + t 2  and Ns for t > tl 
+ t z .  T h e  generation of the  population  at tl + t 2  consists of 2N2 
genes  chosen  at  random with replacement  from  the 2Ns genes 
from  the  previous  generation. Similarly, the  generation  at t l  

consists of  2Nl  genes  chosen  at  random with replacement  from 
the 2N2 genes  of  the  previous  generation.  Let A, be  the  number 
of distinct  ancestors of sampled  genes t generations  ago.  Our 
aim is to  evaluate  the  probability  of A, = j at t = t l  + t z ,  given 
A0 = i (1 S j S i ) .  WATTERSON (1 984a)  considered a  similar but 
more  complicated  problem  that arises  when  effects  of mutations 
are  incorporated in the genealogical  process. 

We  denote by gv( t ,  N)  the probability  of (A, = j I A. = i )  in a 
population  of size N .  For a stationary  population, it is given in 
Tavari.  (1984),  DONNELLY  (1984), WATTERSON (1984b),  and 
TAKAHATA and NEI (1985). T h e  formula  of gtj(t, N )  has an 
invariance  property, which is that for an  arbitrary  constant c ,  

In words, (Al) implies that a gene  tree in a c times  larger 
population is exactly  c  times  magnified compared with that in 
a population of size N. Another  important  property of A, is 
Markovian,  that is for  any  times r and s, 

Equating  A2 holds true  whether or not r (0 S r 5 r + s) is the 
time  of coalescence, and it is due  to  the  fact  that  the  time 
between  two successive coalescences is exponentially  distributed 
(KINGMAN 1982).  Using (A2), we can  readily  express  the  prob- 
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ability & ( t )  = Prob(A, = j l A o  = i) for the present nonstationary 
population (indicated by a  caret over gJ: 

t > tl + t 2 .  

Of particular interest here is g,,(t) at t = tl + t 2 ,  which  is given 
as 

= gik(tl9 Nl)gkj(Ct2, N1) (-44) 
k=] 

= g,(t, + c tz ,  Nd. 

In the above, c = N I / N P  and we have used (Al)  and (A2). The 
model of bottlenecks assumes that N1 > N2 so that the geneal- 
ogical process A, speeds up c times during  the bottleneck phase. 
Although the general formula ofgij(t, N )  is rather complicated, 
it is useful to record the probability of no coalescence during 
the bottleneck phase, which is given by 

Thus  the strength of the bottleneck can be evaluated by 
whether or not k(k  - l ) t 2  >> Nz. Clearly the smaller N2 and  the 
longer t 2 ,  the more likely the condition is satisfied. 


